[1] Powles S B, Yu Q. Evolution in action: plants resistant to herbicide[J]. Annual Review of Plant Biology, 2010, 61: 317-347.
[2] Fedtke C, Duke S O. Herbicide//Hock B, Elstner E F, eds. Plant Toxicology (4th ed)[M]. New York: Marcel Dekker Press, 2005, 247-330.
[3] Duke S O, Powles S B. Glyphosate: a once-in-a-century herbicide[J]. Pest Management Science, 2008, 64(4): 319-325.
[4] Prado J R, Segers G, Voelker T, et al. Genetically engineered crops: from idea to product[J]. Annual Review of Plant Biology, 2014, 65: 769-790.
[5] Czaja K, Góralczyk K, Struciński P, et al. Biopesticides - towards increased consumer safety in the European Union[J]. Pesticide Management Science, 2015, 71(1): 3-6.
[6] Green J M. Current state of herbicides in herbicide-resistant crops[J]. Pesticide Management Science, 2014, 70(9): 1351-1357.
[7] Heap I. The International Survey of Herbicide Resistant Weeds[DB]. http://www.weedscience.org, 27 February 2015.
[8] Willer H, Kilcher L. The world of Organic Agriculture//Statistics and Emerging Trends[M]. FiBL and Frick: IFOAM Bonn, 2011.
[9] 王利, 朱朝华. 生物除草剂研究进展[J]. 广西热带农业, 2008, 1: 15-17.
[10] 马娟, 董金皋. 微生物除草剂与生物安全[J]. 植物保护, 2006, 32(1): 9-12.
[11] Dayan F E, Cantrell C L, Duke S O. Natural products in crop protection[J]. Bioorganic and Medicinal Chemistry, 2009, 17(12): 4022-4034.
[12] Dayan F E, Duke S O. Natural compounds as next-generation herbicides[J]. Plant Physiology, 2014, 166(3): 1090-1105.
[13] 强胜, 陈世国. 生物除草剂研发现状及其面临的机遇与挑战[J]. 杂草科学, 2011, 29(1): 1-6.
[14] Dagno K, Lahlali R, Diourté M, et al. Present status of the development of mycoherbicides against water hyacinth: successes and challenges. A review[J]. Biotechnologie Agronomie Societe et Environnement, 2012, 16(3): 360-368.
[15] Bailey K L, Boyetchko S M, Langle T. Social and economic drivers shaping the future of biological control: a Canadian perspective on the factors affecting the development and use of microbial biopesticides[J]. Biological Control, 2010, 52(3): 221-229.
[16] Qasem J R. Applied allelopathy in weed management: an update//Cheema Z A, Farooq M, Wahid A, eds. Allelopathy (Current Trends and Future Applications)[M]. Berlin Heidelberg: Springer Verlag, 2013, 251-297.
[17] Céspedes C L, Salazar J R, Ariza-Castolo A, et al. Biopesticides from plants: Calceolaria integrifolia s.l.[J]. Environmental Research, 2014, 132: 391-406.
[18] Grayson B T, Williams K S, Freehauf P A, et al. The physical and chemical properties of the herbicide cinmethylin (SD 95481)[J]. Pesticide Science, 1987, 21: 143-153.
[19] Mitchell G, Bartlett D W, Fraser T E M, et al. Mesotrione, a new selective herbicide for use in maize[J]. Pesticide Management Science, 2001, 57(2): 120-128.
[20] 苏少泉. 除草剂作用靶标与新品种创制[M]. 北京: 化学工业出版社, 2001, 162-192.
[21] Narwal S S, Haouala R. Role of allelopathy in weed management for sustainable agriculture//Cheema Z A, Farooq M, Wahid A, eds. Allelopathy (Current Trends and Future Applications)[M]. Berlin Heidelberg: Springer Verlag, 2013, 217-249.
[22] Friesen T L, Faris J D, Solomon P S, et al. Host-specific toxins: effectors of necrotrophic pathogenicity[J]. Cellular Microbiology, 2008, 10(7): 1421-1428.
[23] Yamada O, Kalse Y, Futatsuya F, et al. Studies on plant growth-regulating activities of anisomycin and toyocamycin[J]. Agricultural and Biological Chemistry, 1972, 36(12): 2013-2015.
[24] Yamada O, Ishida S, Futatsuya F, et al. Plant growth regulating activities of 4-methoxydiphenylmethanes and their related compounds[J]. Agricultural and Biological Chemistry, 1974, 38(6): 1235-1240.
[25] Bayer E, Gugel K H, Hagele K, et al. Stoffwechselprodukte von mikroorganismen. 98. Mitteilung. phosphinothricin und phosphinothricyl-alanyl-alanin[J]. Helvetica Chimica Acta, 1972, 55(1): 224-239.
[26] Omura S, Iwai Y, Takahashi Y, et al. Herbimycin, a new antibiotic produced by a strain of Streptomyces[J]. The Journal of Antibiotics, 1979, 32(4): 255-261.
[27] Omura S, Murata M, Hanaki H, et al. Phosalacine, a new herbicidal antibiotic containing phosphinothricin. Fermentation, isolation, biological activity and mechanism of action[J]. The Journal of Antibiotics, 1984, 37(8): 829-835.
[28] 吴文君, 高希武. 生物农药及其应用[M]. 北京: 化学工业出版社, 2004, 73-153.
[29] Zhu Y, Qiang S. Isolation, pathogenicity and pafety of Curvularia eragrostidis isolate QZ-2000 as a bioherbicide agent for large crabgrass (Digitaria sanguinalis)[J]. Biocontrol Science and Technology, 2004, 14(8): 769-782.
[30] 韦韬, 李静, 倪汉文. 稗草生防菌新月弯孢菌株J15 (2)的生物学特性[J]. 中国生物防治, 2009, 25(1): 54-59.
[31] Geng R, Zhang J, Yu L. Helminthosporium gramineum Rabehn f. sp. echinochloae conidia for biological control of barnyardgrass[J]. Weed Science, 2009, 57(5): 554-561.
[32] Tang W, Zhu Y, He H, et al. First report of southern blight on Canadian goldenrod (Solidago canadensis) caused by Sclerotium rolfsii in China[J]. Plant Disease, 2010, 94(9): 1172.
[33] 聂亚锋, 陈志谊, 刘永锋, 等. 假隔链格孢SF-193 的产孢特性及其分生孢子对空心莲子草的致病力[J]. 中国生物防治, 2009, 25(3): 260-266.
[34] Qiang S, Zhu Y, Summerell B, et al. Mycelium of Alternaria alternata as a potential biological control agent for Eupatorium adenophorum[J]. Biocontrol Science and Technology, 2006, 16(7): 653-668.
[35] Chen S, Xu X, Dai X, et al. Identification of tenuazonic acid as a novel type of natural photosystem II inhibitor binding in Q(B)-site of Chlamydomonas reinhardtii[J]. Biochimica et Biophysica Acta, 2007, 1767(4): 306-318.
[36] Chen S, Yin C, Qiang S, et al. Chloroplastic oxidative burst induced by tenuazonic acid, a natural photosynthesis inhibitor, triggers cell necrosis in Eupatorium adenophorum Spreng[J]. Biochimica et Biophysica Acta, 2010, 1797(3): 391-405.
[37] Chen S, Kim C, Lee J, et al. Blocking the QB-binding site of photosystem II by tenuazonic acid, a non-host-specific toxin of Alternaria alternata, activates singlet oxygen-mediated and EXECUTER-dependent signaling in Arabidopsis[J]. Plant, Cell and Environment, 2015, 38(6): 1069-1080.
[38] Tang W, Zhu Y, He H, et al. Field evaluation of Sclerotium rolfsii, a biological control agent for broadleaf weeds in dry, direct-seeded rice[J]. Crop Protection, 2011, 30(10): 1315-1320.
[39] Ash G J. The science, art and business of successful bioherbicides[J]. Biological Control, 2010, 52(3): 230-240.
[40] 强胜, 宋小玲, 戴伟民. 抗除草剂转基因作物面临的机遇与挑战及其发展策略[J]. 农业生物技术学报, 2010, 18(1): 114-125.
[41] Seiber J N, Coats J, Duke S O, et al. Biopesticides: state of the art and future opportunities[J]. Journal of Agricultural and Food Chemistry, 2014, 62(48): 11613-11619.
[42] Dayan F E, Duke S O, Grossmann K. Herbicides as probes in plant biology[J]. Weed Science, 2010, 58(3): 340-350.
[43] Duke S O. Herbicide and pharmaceutical relationships[J]. Weed Science, 2010, 58(3): 334-339.
[44] Duke S O, Dayan F E, Rimando A M, et al. Chemicals from nature for weed management[J]. Weed Science, 2002, 50(2): 138-151.
[45] Duke S O, Baerson S R, Dayan F E, et al. United states department of agricultural research service research on natural products for pest management[J]. Pest Management Science, 2003, 59(6-7): 708-717.
[46] Duke S O. Why have no new herbicide modes of action appeared in recent years?[J] Pesticide Management Science, 2012, 68(4): 505-512.
[47] Lydon J, Duke S O. Inhibitors of glutamine synthesis//Singh B K, ed. Plant Amino Acids[M]. 1999, 445-464. New York: Marcel Dekker.
[48] Thomas M D, Langston-Unkefer P J, Uchytil T F, et al. Inhibition of glutamine synthetase from pea by tabtoxinine-β-lactam[J]. Plant Physiology, 1983, 71(4): 912-915.
[49] Omura S, Murata M, Imamura N, et al. Oxetin, a new antimetabolite from an actinomycete: fermentation, isolation, structure and biological activity[J]. The Journal of Antibiotics, 1984, 37: 1324-1332.
[50] Templeton M D, Reinhardt L A, Collyer C A, et al. Kinetic analysis of the L-ornithine transcarbamoylase from Pseudomonas savastanoi pv. phaseolicola that is resistant to the transition state analogue (R)-Nδ-(N'-sulfodiaminophosphinyl)-L-ornithine[J]. Biochemistry, 2005, 44(11): 4408-4415.
[51] Hsiao P, Sanjaya , Su R C, et al. Plant native tryptophan synthase beta 1 gene is a non-antibiotic selection marker for plant transformation[J]. Planta, 2007, 225(4): 897-906.
[52] Nishino T, Murao S, Wada H. Mechanism of inactivation of pyridoxal phosphate-linked aspartate transaminase by gostatin[J]. The Journal of Biochemistry, 1984, 95: 1283-1288.
[53] Giovanelli J, Owens L D, Mudd S H. β-Cystathionase in vivo inactivation by rhizobitoxine and role of the enzyme in methionine biosynthesis in corn seedlings[J]. Plant Physiology, 1973, 51(3): 492-503.
[54] Groth G. Structure of spinach chloroplast F1-ATPase complexed with the phytopathogenic inhibitor tentoxin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(6): 3464-3468.
[55] Shavit N, San Pietro A. K+-dependent uncoupling of photophosphorylation by nigericin[J]. Biochemical Biophysical Research Communications, 1967, 28(2): 277-283.
[56] Oettmeier W, Godde D, Kunze B, et al. Stigmatellin: a dual type inhibitor of photosynthetic electron transport[J]. Biochimica et Biophysica Acta, 1985, 807(2): 216-219.
[57] Gerwick B C, Fields S S, Graupner P R, et al. Pyridazocidin, a new microbial phytotoxin with activity in the Mehler reaction[J]. Weed Science, 1997, 45: 654-657.
[58] Grossmann K, Hutzler J, Tresch S, et al. On the mode of action of the herbicides cinmethylin and 5-benzyloxymethyl-1,2-isoxazolines: putative inhibitors of plant tyrosine aminotransferase[J]. Pesticide Management Science, 2012, 68(3): 482-492.
[59] Dayan F E, Duke S O, Sauldubois A, et al. p-Hydroxyphenylpyruvate dioxygenase is a herbicidal target site for β-triketones from Leptospermum scoparium[J]. Phytochemistry, 2007, 68(14): 2004-2014.
[60] Romagni J G, Meazza G, Nanayakkara N P D, et al. The phytotoxic lichen metabolite, usnic acid, is a potent inhibitor of plant p-hydroxyphenylpyruvate dioxygenase[J]. FEBS Letters, 2000, 480(2): 301-305.
[61] Kuzuyama T, Shimizu T, Takahashi S, et al. Fosmidomycin, a specific inhibitor of 1-deoxy-D-xylulose 5-phosphate reductoisomerase in the nonmevalonate pathway for terpenoid biosynthesis[J]. Tetrahedron Letters, 1998, 39(43): 7913-7916.
[62] Kahn A, Kannangara C G. Gabaculine-resistant mutants of Chlamydomonas reinhardtii with elevated glutamate 1-semialdehyde aminotransferase activity[J]. Carlsberg Research Communications, 1987, 52(1): 73-81.
[63] Harrington P M, Singh B K, Szamosi I T, et al. Synthesis and herbicidal activity of cyperin[J]. Journal of Agricultural and Food Chemistry, 1995, 43: 804-808.
[64] Price A C, Choi K H, Heath R J, et al. Inhibition of β-ketoacyl-acyl carrier protein synthases by thiolactomycin and cerulenin: structure and mechanism[J]. The Journal of Biological Chemistry, 2001, 276: 6551-6559.
[65] Feld A, Kobek K, Lichtenthaler H K. Inhibition of fatty-acid biosynthesis in isolated chloroplasts by the antibiotics cerulenin and thiolactomycin[J]. Brighton Crop Protection Conference Weeds, 1989, 2: 479-486.
[66] Dayan F E, Ferreira D, Wang Y, et al. A pathogenic fungi diphenyl ether phytotoxin targets plant enoyl (acyl carrier protein) reductase[J]. Plant Physiology, 2008, 147(3): 1062-1071.
[67] Abbas H K, Tanaka T, Duke S O, et al. Fumonisin- and AAL-toxininduced disruption of sphingolipid metabolism with accumulation of free sphingoid bases[J]. Plant Physiology, 1994, 106(3): 1085-1093.
[68] Hejl A M, Koster K L. The allelochemical sorgoleone inhibits root H+-ATPase and water uptake[J]. Journal of Chemical Ecology, 2004, 30(11): 2181-2191.
[69] Hejl A M, Koster K L. Juglone disrupts root plasma membrane H+-ATPase activity and impairs water uptake, root respiration, and growth in soybean (Glycine max) and corn (Zea mays)[J]. Journal of Chemical Ecology, 2004, 30(2): 453-471.
[70] Gomarasca S, Vannini C, Venegoni A, et al. A mutant of Arabidopsis thaliana with a reduced response to fusicoccin[J]. Plant Physiology, 1993, 103(1): 165-170.
[71] Schagina L V, Kaulin Y A, Feigin A M, et al. Properties of ionic channels formed by the antibiotic syringomycin E in lipid bilayers: dependence on the electrolyte concentration in the bathing solution[J]. Membrane and Cell Biology, 1998, 12(4): 537-555.
[72] Levings S S, Rhoads D M, Siedow J N. Molecular interactions of Bipolaris maydis T-toxin and maize[J]. Canadian Journal of Botany, 1995, 73(S1): 483-489.
[73] Coleman R, Penner D. Desiccant activity of short chain fatty acids[J]. Weed Technology, 2006, 20(2): 410-415.
[74] Siehl D L, Subramanian M V, Walters E W, et al. Adenylosuccinate synthetase: site of action of hydantocidin, a microbial phytotoxin[J]. Plant Physiology, 1996, 110: 753-758.
[75] Clinch K. Synthesis of analogues of monic acids A and C: potential herbicides and inhibitors of isoleucyl tRNA synthetase[J]. Bioorganic and Medicinal Chemistry Letters, 1996, 6: 467-472.
[76] Hou C X, Dirk L M A, Pattanaik S, et al. Plant peptide deformylase: a novel selectable marker and herbicide target based on essential cotranslational chloroplast protein processing[J]. Plant Biotechnology Journal, 2007, 5(2): 275-281.
[77] Bajsa J, Pan Z, Dayan F E, et al. Validation of serine-threonine protein phosphatase as the herbicide target site of endothall[J]. Pesticide Biochemistry and Physiology, 2011, 102(1): 38-44.
[78] Mathews D E, Durbin R D. Tagetitoxin inhibits RNA synthesis directed by RNA polymerases from chloroplasts and Escherichia coli[J]. The Journal of Biological Chemistry, 1990, 265(1): 493-498.
[79] Umezawa H, Aoyagi T, Suda H, et al. Bestatin, an inhibitor of aminopeptidase B, produced by actinomycetes[J]. The Journal of Antibiotics, 1976, 29: 97-99.
[80] Meeley R B, Walton J D. Enzymatic detoxification of HC-toxin, the hostselective cyclic peptide from Cochliobolus carbonum[J]. Plant Physiology, 1991, 97(3): 1080-1086.
[81] Dancer J E, Hughes R G, Lindell S D. Adenosine-5′-phosphate deaminase: a novel herbicide target[J]. Plant Physiology, 1997, 114(1): 119-129.
[82] Leung P C, Taylor W A, Wang J, et al. Role of calmodulin inhibition in the mode of action of ophiobolin A[J]. Plant Physiology, 1985, 77(2): 303-308.
[83] Block A, Schmelz E A, Jones J B, et al. Coronatine and salicylic acid: the battle between Arabidopsis and Pseudomonas for phytohormone control[J]. Molecular Plant Pathology, 2005, 6(1): 79-83.
[84] Hayashi K I, Kamio S, Oono Y, et al. Toyocamycin specifically inhibits auxin signaling mediated by SCFTIR1 pathway[J]. Phytochemistry, 2009, 70(2): 190-197.
[85] Yasuta T, Satoh S, Minamisawa K. New assay for rhizobitoxine based on inhibition of 1-aminocyclopropane-1-carboxylate synthase[J]. Applied and Environmental Microbiology, 1999, 65(2): 849-852.
[86] Oracz K, Voegele A, Tarkowská D, et al. Myrigalone A inhibits Lepidium sativum seed germination by interference with gibberellin metabolism and apoplastic superoxide production required for embryo extension growth and endosperm rupture[J]. Plant and Cell Physiology, 2012, 53(1): 81-95.
[87] Chaimovitsh D, Abu-Abied M, Belausov E, et al. Microtubules are an intracellular target of the plant terpene citral[J]. The Plant Journal, 2010, 61(3): 399-408.
[88] Bischoff V, Cookson S J, Wu S, et al. Thaxtomin A affects CESA-complex density, expression of cell wall genes, cell wall composition, and causes ectopic lignification in Arabidopsis thaliana seedlings[J]. Journal of Experimental Botany, 2009, 60(3): 955-965.
[89] Driouich A, Jauneau A, Staehelin L A. 7-Dehydrobrefeldin A, a naturally occurring brefeldin A derivative, inhibits secretion and causes a cis-to-trans breakdown of Golgi stacks in plant cells[J]. Plant Physiology, 1997, 113(2): 487-492.
[90] Ikegami S, Taguchi T, Ohashi M, et al. Aphidicolin prevents mitotic cell division by interfering with the activity of DNA polymerase-α[J]. Nature, 1978, 275(5679): 458-460.
[91] Perennes C, Qin L, Glab N, et al. Petunia p34cdc2 protein kinase activity in G2/M cells obtained with a reversible cell cycle inhibitor, mimosine[J]. FEBS Letters, 1993, 333(1-2): 141-145.
[92] Planchais S, Glab N, Inzé D, et al. Chemical inhibitors: a tool for plant cell cycle studies[J]. FEBS Letters, 2000, 476(1-2): 78-83. |