[1] Abad P, Gouzy J, Aury J M, et al. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita[J]. Nature Biotechnology, 2008, 26(8):909-915. [2] 陈立杰, 段玉玺. 植物寄生线虫虫种资源的分类鉴定[J]. 中国寄生虫学与寄生虫病杂志, 2006, 24(S):29-33. [3] 沈阳. 植物病原线虫的危害及其防治策略初探[J]. 安徽农学通报, 2007, 13(18):170-171. [4] 孙世伟, 桑利伟. 根结线虫防治研究进展[J]. 现代农业科技, 2008, 11:181-184. [5] 王树昌, 潘贤丽. 浅谈生物防治中的生物农药[J]. 华南热带农业大学学报, 2003, 9(1):27-31. [6] 徐汉虹, 张志祥, 程东美. 植物源农药与农业可持续发展[J]. 科技导报, 2002, 1:42-44. [7] 邱雪柏. 烟草根结线虫生物防治研究进展[J]. 贵州农业科学, 2010, 38(7):121-124. [8] 安玉兴, 孙东磊, 周丽娟, 等. 菊科植物的杀线虫活性研究与应用[J]. 中国农学通报, 2009, 25(23):364-369. [9] 祝绍文. 骆驼蓬碱衍生物的杀线虫活性及作用机理研究[D]. 广州:华南农业大学, 2016. [10] Natarajan N, Cork A, Boomathi N, et al. Cold aqueous extracts of African marigold, Tagetes erecta for control tomato root knot nematode, Meloidogyne incognita[J]. Crop Protection, 2006, 25(11):1210-1213. [11] Hooks C R R, Wang K H, Ploeg A, et al. Using marigold (Tagetes spp.) as a cover crop to protect crops from plant-parasitic nematodes[J]. Applied Soil Ecology, 2010, 46(3):307-320. [12] Javed N, Gowen S R, El-Hassan S A, et al. Efficacy of neem (Azadirachta indica) formulations on biology of root-knot nematodes (Meloidogyne javanica) on tomato[J]. Crop Protection, 2008, 27(1):36-43. [13] Thoden T C, Boppré M, Hallmann J. Effects of pyrrolizidine alkaloids on the performance of plant-parasitic and free-living nematodes[J]. Pest Management Science, 2009, 65(7):823-830. [14] Buena A P, García-Álvarez A, Díez-Rojo M A, et al. Use of pepper crop residues for the control of root-knot nematodes[J]. Bioresource Technology, 2007, 98(15):2846-2851. [15] Zasada I A, Rice C P, Meyer S L. Improving the use of rye (Secale cereale) for nematode management:potential to select cultivars based on Meloidogyne incognita host status and benzoxazinoid content[J]. Nematology, 2007, 9(1):53-60. [16] Potter M J, Davies K, Rathjen A J. Suppressive impact of glucosinolates in Brassica vegetative tissues on root lesion nematode, Pratylenchus neglects[J]. Journal of Chemical Ecology, 1998, 24(1):67-80. [17] Dang Q L, Kim W K, Nguyen C M, et al. Nematicidal and antifungal activities of annonaceous acetogenins from Annona squamosa against various plant pathogens[J]. Journal of Agricultural and Food Chemistry, 2011, 59(20):11160-11167. [18] Julio L F, González-Coloma A, Burillo J, et al. Nematicidal activity of the hydrolate byproduct from the semi industrial vapor pressure extraction of domesticated Artemisia absinthium against Meloidogyne javanica[J]. Crop Protection, 2017, 94(1):33-37. [19] Sydney M. Root knot nematodes (Meloidogyne incognita) interaction with selected Asteraceae plants and their potential use for nematode management[D]. Kenya:JKUAT, 2016. [20] 张敏, 苏康宇, 刘晟, 等. 中草药提取液对黄瓜苗期杀根结线虫的活性研究[J]. 农业科学与技术, 2010, 11:129-133. [21] Pérez M P, Navas-Cortés J A, Pascual-Villalobos M J, et al. Nematicidal activity of essential oils and organic amendments from Asteraceae against root-knot nematodes[J]. Plant Pathology, 2003, 52(3):395-401. [22] Aydinli G, Mennan S. Effect of some plant extracts on Meloidogyne arenaria Neal, 1889(Tylenchida:Meloidogynidae) and tomato[J]. Turkish Journal of Entomology, 2014, 38(3):323-332. [23] Shin J H, Kwon O, Lee C M, et al. Nematicidal activity of Eclipta prostrata extract and terthiophene against pine wood nematode, Bursaphelenchus xylophilus[J]. The Korean Journal of Pesticide Science, 2016, 20(1):56-65. [24] Kepenekci I, Toktay H, Saglam H D, et al. Effects of some indigenous plant extracts on mortality of the root lesion nematode, Pratylenchus thornei Sher & Allen[J]. Egyptian Journal of Biological Pest Control, 2016, 26(1):119. [25] Kepenekçi İ, Erdoğuş D, Erdoğan P. Effects of some plant extracts on root-knot nematodes in vitro and in vivo conditions[J]. Turkish Journal of Entomology, 2016, 40(1):3-14. [26] Bai C Q, Liu Z L, Liu Q Z. Nematicidal constituents from the essential oil of Chenopodium ambrosioides aerial parts[J]. Journal of Chemistry, 2011, 8(S1):143-148. [27] Cetintas R, Yarba M M. Nematicidal effects of five plant essential oils on the southern root-knot nematode, Meloidogyne incognita Race 2[J]. Journal of Animal and Veterinary Advances, 2010, 9(2):222-225. [28] Faria J M S, Sena I, Ribeiro B, et al. First report on Meloidogyne chitwoodi hatching inhibition activity of essential oils and essential oils fractions[J]. Journal of Pest Science, 2016, 89(1):207-217. [29] Khurma U R, Mangotra A. Screening of some Leguminosae seeds for nematicidal activity[J]. The South Pacific Journal of Natural and Applied Sciences, 2004, 22(1):51-53. [30] Yildiz S. Rotational and nematicidal effect of lupine (Lupinus albus L.:Leguminosae)[J]. African Journal of Biotechnology, 2011, 10(61):13252-13255. [31] D'addabbo T, Carbonara T, Leonetti P, et al. Control of plant parasitic nematodes with active saponins and biomass from Medicago sativa[J]. Phytochemistry Reviews, 2011, 10(4):503-519. [32] Ntalli N G, Menkissoglu-Spiroudi U, Giannakou I. Nematicidal activity of powder and extracts of Melia azedarach fruits against Meloidogyne incognita[J]. Annals of Applied Biology, 2010, 156(2):309-317. [33] Meyer S L F, Lakshman D K, Zasada I A, et al. Phytotoxicity of clove oil to vegetable crop seedlings and nematotoxicity to root-knot nematodes[J]. HortTechnology, 2008, 18(4):631-638. [34] San Martín R, Magunacelaya J C. Control of plant-parasitic nematodes with extracts of Quillaja saponaria[J]. Nematology, 2005, 7(4):577-585. [35] Ntalli N G, Manconi F, Leonti M, et al. Aliphatic ketones from Ruta chalepensis (Rutaceae) induce paralysis on root knot nematodes[J]. Journal of Agricultural and Food Chemistry, 2011, 59(13):7098-7103. [36] Caboni P, Ntalli N G, Aissani N, et al. Nematicidal activity of (E,E)-2,4-decadienal and (E)-2-decenal from Ailanthus altissima against Meloidogyne javanica[J]. Journal of Agricultural and Food Chemistry, 2012, 60(4):1146-1151. [37] Liu G, Lai D, Liu Q Z, et al. Identification of nematicidal constituents of Notopterygium incisum rhizomes against Bursaphelenchus xylophilus and Meloidogyne incognita[J]. Molecules, 2016, 21(10):1276. [38] Begum S, Zehra S Q, Siddiqui B S, et al. Pentacyclic triterpenoids from the aerial parts of Lantana camara and their nematicidal activity[J]. Chemistry and Biodiversity, 2008, 5(9):1856-1866. [39] 吴钜文, 陈建峰. 植物源农药及其安全性[J]. 植物保护, 2002, 28(4):39-41. [40] 李继平, 漆永红, 陈书龙, 等. 利用杀线植物资源防治植物寄生线虫的研究进展[J]. 草业学报, 2013, 22(3):297-305. [41] Chitwood D J. Phytochemical based strategies for nematode control[J]. Annual Review of Phytopathology, 2002, 40(1):221-249. [42] Rattan R S. Mechanism of action of insecticidal secondary metabolites of plant origin[J]. Crop Protection, 2010, 29(9):913-920. [43] Bijloo J D. The "Pisum" test:a simple method for the screening of substances on their therapeutic nematicidal activity[J]. Nematologica, 1965, 11(4):643-644. [44] Wang K, Luo C, Liu H, et al. Nematicidal activity of the alkaloids from Macleaya cordata against certain nematodes[J]. African Journal of Agricultural Research, 2012, 7(44):5925-5929. [45] Chitwood D J. Research on plant-parasitic nematode biology conducted by the United States department of agriculture-agricultural research service[J]. Pest Management Science, 2003, 59(6-7):748-753. [46] Liu X C, Lai D, Liu Q Z, et al. Bioactivities of a new pyrrolidine alkaloid from the root barks of Orixa japonica[J]. Molecules, 2016, 21(12):1665. [47] Huang S Z, Kong F D, Ma Q Y, et al. Nematicidal Stemona alkaloids from Stemona parviflora[J]. Journal of Natural Products, 2016, 79(10):2599-2605. [48] Jang J Y, Dang Q L, Choi Y H, et al. Nematicidal activities of 4-quinolone alkaloids isolated from the aerial part of Triumfetta grandidens against Meloidogyne incognita[J]. Journal of Agricultural and Food Chemistry, 2014, 63(1):68-74. [49] Gao Q Y, Hu F L, Zhu H H, et al. Control effects of Ricinus communis extracts on Meloidogyne incognita[J]. The Journal of Applied Ecology, 2011, 22(11):3033-3038. [50] Tan Q G, Luo X D. Meliaceous limonoids:chemistry and biological activities[J]. Chemical reviews, 2011, 111(11):7437-7522. [51] Pelinganga O, Mashela P. Mean dosage stimulation range of allelochemicals from crude extracts of Cucumis africanus fruit for improving growth of tomato plant and suppressing Meloidogyne incognita numbers[J]. Journal of Agricultural Science, 2012, 4(12):8-12. [52] Begum S, Wahab A, Siddiqui B S, et al. Nematicidal constituents of the aerial parts of Lantana camara[J]. Journal of Natural Products, 2000, 63(6):765-767. [53] Begum S, Ayub A, Shaheen Siddiqui B, et al. Nematicidal triterpenoids from Lantana camara[J]. Chemistry and Biodiversity, 2015, 12(9):1435-1442. [54] Naz I, Khan M R. Nematicidal activity of nonacosane-10-ol and 23α-homostigmast-5-en-3β-ol isolated from the roots of Fumaria parviflora (Fumariaceae)[J]. Journal of Agricultural and Food Chemistry, 2013, 61(24):5689-5695. [55] Ntalli N G, Ferrari F, Giannakou I, et al. Phytochemistry and nematicidal activity of the essential oils from 8 Greek Lamiaceae aromatic plants and 13 terpene components[J]. Journal of Agricultural and Food Chemistry, 2010, 58(13):7856-7863. [56] 梁浩, 李瑞敏, 袁其朋. 天然活性异硫氰酸酯类化合物的研究进展[J]. 北京化工大学学报(自然科学版), 2015, 42(2):1-12. [57] Deng Q, Zinoviadou K G, Galanakis C M, et al. The effects of conventional and non-conventional processing on glucosinolates and its derived forms, isothiocyanates:extraction, degradation, and applications[J]. Food Engineering Reviews, 2015, 7(3):357-381. [58] Ntalli N, Caboni P. A review of isothiocyanates biofumigation activity on plant parasitic nematodes[J]. Phytochemistry Reviews, 2017, 1:1-8. [59] Lazzeri L, Curto G, Leoni O, et al. Effects of glucosinolates and their enzymatic hydrolysis products via myrosinase on the root-knot nematode Meloidogyne incognita (Kofoid et White) Chitw[J]. Journal of Agricultural and Food Chemistry, 2004, 52(22):6703-6707. [60] Wood C, Kenyon D M, Cooper J M. Allyl isothiocyanate shows promise as a naturally produced suppressant of the potato cyst nematode, Globodera pallida, in biofumigation systems[J]. Nematology, 2017, 19(4):389-402. [61] Wu H Y, Masler E P, Rogers S T, et al. Benzyl isothiocyanate affects development, hatching and reproduction of the soybean cyst nematode Heterodera glycines[J]. Nematology, 2014, 16(4):495-504. [62] Buskov S, Serra B, Rosa E, et al. Effects of intact glucosinolates and products produced from glucosinolates in myrosinase-catalyzed hydrolysis on the potato cyst nematode (Globodera rostochiensis cv. Woll)[J]. Journal of Agricultural and Food Chemistry, 2002, 50(4):690-695. [63] Mao L, Jiang H, Zhang L, et al. Replacing methyl bromide with a combination of 1, 3-dichloropropene and metam sodium for cucumber production in China[J]. PloS ONE, 2017, 12(11):e0188137. [64] Ntalli N G, Menkissoglu-Spiroudi U. Pesticides of botanical origin:a promising tool in plant protection[EB/OL]. InTech, 2011. https://cdn.intechopen.com/pdfs-wm/13001.pdf [65] Mostafanezhad H, Sahebani N, Nourinejhad Zarghani S. Control of root-knot nematode (Meloidogyne javanica) with combination of Arthrobotrys oligospora and salicylic acid and study of some plant defense responses[J]. Biocontrol Science and Technology, 2014, 24(2):203-215. [66] Renčo M, Sasanelli N, Papajová I, et al. Nematicidal effect of chestnut tannin solutions on the potato cyst nematode Globodera rostochiensis (Woll.) Barhens[J]. Helminthologia, 2012, 49(2):108-114. [67] Alaklabi A, Arif I A, Ahamed A, et al. Larvicidal, nematicidal, antifeedant and antifungal, antioxidant activities of Mentha spicata (Lamiaceae) root extracts[J]. Tropical Journal of Pharmaceutical Research, 2016, 15(11):2383-2390. [68] Alves G C, Ferri P H, Seraphin J C, et al. Principal response curves analysis of polyphenol variation in resistant and susceptible cotton after infection by a root-knot nematode (RKN)[J]. Physiological and Molecular Plant Pathology, 2016, 96(1):19-28. [69] Nguyen D, Seo D J, Kim K Y, et al. Nematicidal activity of 3,4-dihydroxybenzoic acid purified from Terminalia nigrovenulosa bark against Meloidogyne incognita[J]. Microbial Pathogenesis, 2013, 59(1):52-59. [70] Lu H, Xu S, Zhang W, et al. Nematicidal activity of trans-2-hexenal against southern root-knot nematode (Meloidogyne incognita) on tomato plants[J]. Journal of Agricultural and Food Chemistry, 2017, 65(3):544-550. [71] 徐勇, 郭鑫宇, 项盛, 等. 植物源杀虫剂印楝素研究开发及应用进展[J]. 现代农药, 2014, 13(5):31-37. [72] Salehzadeh A, Akhkha A, Cushley W, et al. The antimitotic effect of the neem terpenoid azadirachtin on cultured insect cells[J]. Insect Biochemistry and Molecular Biology, 2003, 33(7):681-689. [73] Anuradha A, Annadurai R S, Shashidhara L S. Actin cytoskeleton as a putative target of the neem limonoid Azadirachtin A[J]. Insect Biochemistry and Molecular Biology, 2007, 37(6):627-634. [74] Radad K, Rausch W D, Gille G. Rotenone induces cell death in primary dopaminergic culture by increasing ROS production and inhibiting mitochondrial respiration[J]. Neurochemistry International, 2006, 49(4):379-386. [75] Dukes A A, Korwek K M, Hastings T G. The effect of endogenous dopamine in rotenone-induced toxicity in PC12 cells[J]. Antioxidants and Redox Signaling, 2005, 7(5-6):630-638. [76] Narahashi T. Neuronal ion channels as the target sites of insecticides[J]. Basic and Clinical Pharmacology and Toxicology, 1996, 79(1):1-14. [77] Breckenridge C B, Holden L, Sturgess N, et al. Evidence for a separate mechanism of toxicity for the type I and the type Ⅱ pyrethroid insecticides[J]. Neurotoxicology, 2009, 30(S):17-31. [78] Caboni P, Aissani N, Cabras T, et al. Potent nematicidal activity of phthalaldehyde, salicylaldehyde, and cinnamic aldehyde against Meloidogyne incognita[J]. Journal of Agricultural and Food Chemistry, 2013, 61(8):1794-1803. [79] Bonnefont-Rousselot D. Glucose and reactive oxygen species[J]. Current Opinion in Clinical Nutrition and Metabolic Care, 2002, 5(5):561-568. [80] Wu C H, Huang S M, Lin J A, et al. Inhibition of advanced glycation endproduct formation by foodstuffs[J]. Food and Function, 2011, 2(5):224-234. [81] Seidel T, Scholl S, Krebs M, et al. Regulation of the V-type ATPase by redox modulation[J]. Biochemical Journal, 2012, 448(2):243-251. [82] Coats J R, Tsao R, Peterson C J, et al. Activity of Glucosinolate Aglycones and Cyanohydrin Aglycones against Nematodes, Insects, Bacteria, Fungi, and Weeds[M]//Biopesticides:State of the Art and Future Opportunities. American Chemical Society, 2014, 179-188. [83] Buffinton G D, Öllinger K, Brunmark A, et al. DT-diaphorase-catalysed reduction of 1,4-naphthoquinone derivatives and glutathionyl-quinone conjugates. Effect of substituents on autoxidation rates[J]. Biochemical Journal, 1989, 257(2):561-571. [84] Wang J, Zeng G Z, Huang X B, et al. 1,4-Naphthoquinone triggers nematode lethality by inducing oxidative stress and activating Insulin/IGF signaling pathway in Caenorhabditis elegans[J]. Molecules, 2017, 22(5):798. [85] Kokel D, Li Y H, Qin J, et al. The nongenotoxic carcinogens naphthalene and para-dichlorobenzene suppress apoptosis in Caenorhabditis elegans[J]. Nature Chemical Biology, 2006, 2(6):338-345. [86] 余露. 我国生物农药产品登记占农药登记总数超十成[J]. 农药市场信息, 2017, 2(30):37-38. [87] 唐韵. 我国生物农药登记品种及其实用技术[J]. 农药市场信息, 2013, 6:43-44. [88] 唐韵. 我国生物农药发展现状与选用指南[J]. 农药市场信息, 2014, 5:52-53. [89] 唐韵. 我国生物农药新品种登记状况及其应用[J]. 农药市场信息, 2017, 6:29. |