[1] Cho K H, Daubnerová I, Park Y, et al. Secretory competence in a gateway endocrine cell conferred by the nuclear receptor βFTZ-F1 enables stage-specific ecdysone responses throughout development in Drosophila[J]. Developmental Biology, 2014, 385(2):253-262. [2] 柳鹏飞,王伟伟,凌晓霏,等.保幼激素和蜕皮激素调控昆虫变态发育机制的进展[J].基因组学与应用生物学, 2021, 40(Z1):2054-2062. [3] Iga M, Kataoka H. Recent studies on insect hormone metabolic pathways mediated by cytochrome P450 enzymes[J]. Biological and Pharmaceutical Bulletin, 2012, 35(6):838-843. [4] Antoniewski C, Mugat B, Delbac F, et al. Direct repeats bind the EcR/USP receptor and mediate ecdysteroid responses in Drosophila melanogaster[J]. Molecular and Cellular Biology, 1996, 16(6):2977-2986. [5] Ruaud A F, Lam G, Thummel C S. The Drosophila nuclear receptors DHR3 and βFTZ-F1 control overlapping developmental responses in late embryos[J]. Development, 2010, 137(1):123-131. [6] Dubrovsky E B. Hormonal cross talk in insect development[J]. Trends in Endocrinology& Metabolism, 2005, 16(1):6-11. [7] Liu X P, Fu K Y, Lü F G, et al. Involvement of FTZ-F1 in the regulation of pupation in Leptinotarsa decemlineata(Say)[J]. Insect Biochemistry and Molecular Biology, 2014, 55:51-60. [8] Parvy J P, Blais C, Bernard F, et al. A role for βFTZ-F1 in regulating ecdysteroid titers during post-embryonic development in Drosophila melanogaster[J]. Developmental Biology, 2005, 282(1):84-94. [9] Futahashi R, Fujiwara H. Melanin-synthesis enzymes coregulate stage-specific larval cuticular markings in the swallowtail butterfly, Papilio xuthus[J]. Development Genes and Evolution, 2005, 215(10):519-529. [10] Futahashi R, Fujiwara H. Juvenile hormone regulates butterfly larval pattern switches[J]. Science, 2008, 319(5866):1061-1061. [11] Hiruma K, Riddiford L M. The molecular mechanisms of cuticular melanization:the ecdysone cascade leading to dopa decarboxylase expression in Manduca sexta[J]. Insect Biochemistry and Molecular Biology, 2009, 39(4):245-253. [12] Liu C, Yamamoto K, Cheng T C, et al. Repression of tyrosine hydroxylase is responsible for the sex-linked chocolate mutation of the silkworm, Bombyx mori[J]. Proceedings of the National Academy of Sciences, 2010, 107(29):12980-12985. [13] Futahashi R, Banno Y, Fujiwara H. Caterpillar color patterns are determined by a two-phase melanin gene prepatterning process:new evidence from tan and laccase2[J]. Evolution& Development, 2010, 12(2):157-167. [14] Gruntenko N E, Rauschenbach I Y. Interplay of JH, 20E and biogenic amines under normal and stress conditions and its effect on reproduction[J]. Journal of Insect Physiology, 2008, 54(6):902-908. [15] Rauschenbach I Y, Bogomolova E V, Karpova E K, et al. Mechanisms of age-specific regulation of dopamine metabolism by juvenile hormone and 20-hydroxyecdysone in Drosophila females[J]. Journal of Comparative Physiology B, 2011, 181(1):19-26. [16] Murata T, Kageyama Y, Hirose S, et al. Regulation of the EDG84A gene by FTZ-F1 during metamorphosis in Drosophila melanogaster[J]. Molecular and Cellular Biology, 1996, 16(11):6509-6515. [17] Tan A, Palli S R. Identification and characterization of nuclear receptors from the red flour beetle, Tribolium castaneum[J]. Insect Biochemistry and Molecular Biology, 2008, 38(4):430-439. [18] Yamada M, Murata T, Hirose S, et al. Temporally restricted expression of transcription factor betaFTZ-F1:significance for embryogenesis, molting and metamorphosis in Drosophila melanogaster[J]. Development, 2000, 127(23):5083-5092. [19] Cruz J, Nieva C, Mané-Padrós D, et al. Nuclear receptor BgFTZ-F1 regulates molting and the timing of ecdysteroid production during nymphal development in the hemimetabolous insect Blattella germanica[J]. Developmental Dynamics, 2008, 237(11):3179-3191. [20] Wang H B, Nita M, Iwanaga M, et al. βFTZ-F1 and Broad-Complex positively regulate the transcription of the wing cuticle protein gene, BMWCP5, in wing discs of Bombyx mori[J]. Insect Biochemistry and Molecular Biology, 2009, 39(9):624-633. [21] Zhang W, Ma L, Liu X, et al. Dissecting the roles of FTZ-F1 in larval molting and pupation, and the sublethal effects of methoxyfenozide on Helicoverpa armigera[J]. Pest Management Science, 2021, 77(3):1328-1338. [22] Lü J, Guo W, Chen S M, et al. Double-stranded RNAs targeting HvRPS18 and HvRPL13 reveal potential targets for pest management of the 28-spotted ladybeetle, Henosepilachna vigintioctopunctata[J]. Pest Management Science, 2020, 76(8):2663-2673. [23] 涂小云,王国红.茄二十八星瓢虫生物防治研究进展[J].中国植保导刊, 2010, 3:13-16. [24] Zhang J, Khan S A, Heckel D G, et al. Next-generation insect-resistant plants:RNAi-mediated crop protection[J]. Trends in Biotechnology, 2017, 35(9):871-882. [25] Yan S, Qian J, Cai C, et al. Spray method application of transdermal dsRNA delivery system for efficient gene silencing and pest control on soybean aphid Aphis glycines[J]. Journal of Pest Science, 2020, 93(1):449-459. [26] Yan S, Ren B Y, Shen J. Nanoparticle-mediated double-stranded RNA delivery system:A promising approach for sustainable pest management[J]. Insect Science, 2021, 28(1):21-34. [27] Lü J, Liu Z Q, Guo W, et al. Oral delivery of dsHvlwr is a feasible method for managing the pest Henosepilachna vigintioctopunctata(Coleoptera:Coccinellidae)[J]. Insect Science, 2021, 28(2):509-520. [28] Lü J, Yang C, Liu Z, et al. Dietary RNAi toxicity assay suggests α and γ subunits of HvCOPI as novel molecular targets for Henosepilachna vigintioctopunctata, an emerging coccinellid pest[J]. Journal of Pest Science, 2021, 94(4):1473-1486. [29] Guo M J, Nanda S, Chen S M, et al. Oral RNAi toxicity assay suggests clathrin heavy chain as a promising molecular target for controlling the 28-spotted potato ladybird, Henosepilachna vigintioctopunctata[J]. Pest Management Science, 2022, 78(9):3871-3879. [30] Guo W, Guo M J, Yang C X, et al. RNA interference-mediated silencing of vATPase subunits A and E affect survival and development of the 28-spotted ladybeetle, Henosepilachna vigintioctopunctata[J]. Insect Science, 2021, 28(6):1664-1676. [31] Wu J J, Mu L L, Kang W N, et al. RNA interference targeting ecdysone receptor blocks the larval-pupal transition in Henosepilachna vigintioctopunctata[J]. Insect Science, 2021, 28(2):419-429. [32] Liu Z Q, Nanda S, Yang C X, et al. RNAi suppression of the nuclear receptor FTZ-F1 impaired ecdysis, pupation, and reproduction in the 28-spotted potato ladybeetle, Henosepilachna vigintioctopunctata[J]. Pesticide Biochemistry and Physiology, 2022, 182:105029. [33] Pan H P, Yang X W, Romeis J, et al. Dietary RNAi toxicity assay exhibits differential responses to ingested dsRNAs among lady beetles[J]. Pest Management Science, 2020, 76(11):3606-3614. [34] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method[J]. Methods, 2001, 25(4):402-408. [35] Sultan A R S, Oish Y, Ueda H. Function of the nuclear receptor FTZ-F1 during the pupal stage in Drosophila melanogaster[J]. Development, Growth& Differentiation, 2014, 56(3):245-253. [36] Xu Y, Yang X, Sun X, et al. Transcription factor FTZ-F1 regulates mosquito cuticular protein CPLCG5 conferring resistance to pyrethroids in Culex pipiens pallens[J]. Parasites& Vectors, 2020, 13(1):1-13. [37] Chen P, Qu M, Yang J, et al. Cloning and expression of two laccase genes Oflac1 and Oflac2 from the insect Ostrinia furnacalis[J]. Scientia Agricultura Sinica, 2014, 47:1341-1350. [38] Elias-Neto M, Soares M P M, Simões Z L P, et al. Developmental characterization, function and regulation of a laccase2 encoding gene in the honey bee, Apis mellifera(Hymenoptera, Apinae)[J]. Insect Biochemistry and Molecular Biology, 2010, 40(3):241-251. [39] 姚雪,李琳红,魏纪珍,等.棉铃虫酪氨酸羟化酶基因的分子特性及功能分析[J].昆虫学报, 2019, 62(3):294-303. |