中国生物防治学报 ›› 2024, Vol. 40 ›› Issue (4): 727-738.DOI: 10.16409/j.cnki.2095-039x.2024.02.039
• 重大农业入侵生物扩张蔓延机制与高效防控技术研究专栏 •
罗涛涛1,2, 阎姝彦2, 曹梦宇3, 张静航3, 张桂芬2, 万方浩2, 张亚1, 李涛4, 刘双清1, 张毅波2
收稿日期:
2024-06-15
发布日期:
2024-08-06
作者简介:
罗涛涛,女,硕士研究生,E-mail:luotaotao0124@139.com;通信作者,刘双清,男,博士,副教授,E-mail:liushuangqing@hunau.edu.cn;张毅波,男,博士,副研究员,E-mail:zhangyibo@caas.cn。
基金资助:
LUO Taotao1,2, YAN Shuyan2, CAO Mengyu3, ZHANG Jinghang3, ZHANG Guifen2, WAN Fanghao2, ZHANG Ya1, LI Tao4, LIU Shuangqing1, ZHANG Yibo2
Received:
2024-06-15
Published:
2024-08-06
摘要: 番茄潜叶蛾是一种世界范围的重大外来入侵物种,主要通过幼虫潜叶和蛀果危害番茄作物。自2017年入侵新疆伊犁以来,该虫已扩散蔓延至我国多个省份(直辖市和自治区),并在多地暴发成灾,严重威胁我国番茄产业的生产。基于捕食性天敌资源的生物防治是当前番茄潜叶蛾综合治理的主要手段之一。目前,关于番茄潜叶蛾捕食性天敌资源研究现状的综述性论文较少。据此,本文系统梳理了全球范围内的番茄潜叶蛾捕食性天敌资源种类,概括了捕食性天敌对番茄潜叶蛾的捕食能力、取食番茄潜叶蛾后捕食性天敌的生命参数、化学农药对捕食性天敌防控番茄潜叶蛾的影响,分析了当前利用捕食性天敌防治番茄潜叶蛾存在的问题和发展方向,以求为我国番茄潜叶蛾生物防治工作提供参考。
中图分类号:
罗涛涛, 阎姝彦, 曹梦宇, 张静航, 张桂芬, 万方浩, 张亚, 李涛, 刘双清, 张毅波. 基于捕食性天敌资源的番茄潜叶蛾生物防控研究进展[J]. 中国生物防治学报, 2024, 40(4): 727-738.
LUO Taotao, YAN Shuyan, CAO Mengyu, ZHANG Jinghang, ZHANG Guifen, WAN Fanghao, ZHANG Ya, LI Tao, LIU Shuangqing, ZHANG Yibo. Advances in Biological Control of Tuta absoluta (Meyrick) Based on Predatory Natural Enemy Resources[J]. Chinese Journal of Biological Control, 2024, 40(4): 727-738.
[1] Desneux N, Wajnberg E, Wyckhuys K A G, et al. Biological invasion of european tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control[J]. Journal of Pest Science, 2010, 83(3): 197-215. [2] 张桂芬, 刘万学, 万方浩, 等. 世界毁灭性检疫害虫番茄潜叶蛾的生物生态学及危害与控制[J]. 生物安全学报, 2018, 27(3): 155-163. [3] Biondi A, Zappala L, Di Mauro A, et al. Can alternative host plant and prey affect phytophagy and biological control by the zoophytophagous mirid Nesidiocoris tenuis?[J]. Biocontrol, 2016, 61(1): 79-90. [4] Desneux N, Han P, Mansour R, et al. Integrated pest management of Tuta absoluta: practical implementations across different world regions[J]. Journal of Pest Science, 2022, 95(1): 17-39. [5] 张桂芬, 张毅波, 刘万学, 等. 诱捕器颜色和悬挂高度对番茄潜叶蛾诱捕效果的影响[J]. 中国农业科学, 2021, 54(11): 2343-2354. [6] Urbaneja A, González C J, Arnó J, et al. Prospects for the biological control of Tuta absoluta in tomatoes of the Mediterranean basin: Prospects for biocontrol of Tuta absoluta[J]. Pest Management Science, 2012, 68(9): 1215-1222. [7] Biondi A, Guedes R N C, Wan F H, et al. Ecology, worldwide spread, and management of the invasive south American tomato pinworm, Tuta absoluta: past, present, and future[J]. Annual Review of Entomology, 2018, 63: 239-258. [8] 张桂芬, 张毅波, 冼晓青, 等. 新发重大农业入侵害虫番茄潜叶蛾的发生为害与防控对策[J]. 植物保护, 2022, 48(4): 51-58. [9] Wang M H, Ismoilov K, Liu W X, et al. Tuta absoluta management in China: progress and prospects[J]. Entomologia Generalis, 2024, 44: 269-278. [10] Wang Y S, Tian X C, Wang H, et al. Genetic diversity and genetic differentiation pattern of Tuta absoluta across China[J]. Entomologia Generalis, 2023, 43(6): 1171-1181. [11] Gabarra R, Arno J, Lara L, et al. Native parasitoids associated with Tuta absoluta in the tomato production areas of the Spanish mediterranean coast[J]. Biocontrol, 2014, 59(1): 45-54. [12] Abracos D G, Caldas F, Pechirra A, et al. Intraguild predation and cannibalism among Dicyphini: Dicyphus cerastiivs two commercialized species[J]. Entomologia Experimentalis et Applicata, 2021, 169(1): 90-96. [13] Sabino P H S, Negrisoli A S, Andaló V, et al. Combined application of entomopathogenic nematodes and insecticides in the control of leaf-miner Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) on tomato[J]. Neotropical Entomology, 2019, 48(2): 314-322. [14] 吴进才. 农药诱导害虫再猖獗机制[J]. 应用昆虫学报, 2011, 48(4): 799-803. [15] Siqueira H A A, Guedes R N C, Fragoso D B, et al. Abamectin resistance and synergism in Brazilian populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae)[J]. International Journal of Pest Management, 2001, 47(4): 247-251. [16] Mansour R, Brevault T, Chailleux A, et al. Occurrence, biology, natural enemies and management of Tuta absoluta in Africa[J]. Entomologia Generalis, 2018, 38(2): 83-112. [17] Han P, Bayram Y, Shaltiel-Harpaz L, et al. Tuta absoluta continues to disperse in Asia: damage, ongoing management and future challenges[J]. Journal of Pest Science, 2019, 92: 1317-1327. [18] Wang M, Ismoilov K, Liu W, et al. Tuta absoluta management in China: progress and prospects[J]. Entomologia Generalis, 2024, 44(2): 269-278. [19] Luna M G, Sánchez N E, Pereyra P C, et al. Biological control of Tuta absoluta in Argentina and Italy: evaluation of indigenous insects as natural enemies[J]. EPPO Bulletin, 2012, 42(2): 260-267. [20] Biondi A, Chailleux A, Lambion J, et al. Indigenous natural enemies attacking Tuta absoluta (Lepidoptera: Gelechiidae) in southern France[J]. Egyptian Journal of Biological Pest Control, 2013, 23(1): 117. [21] Zappalà L, Biondi A, Alma A, et al. Natural enemies of the south American moth, Tuta absoluta, in Europe, north Africa and Middle East, and their potential use in pest control strategies[J]. Journal of Pest Science, 2013, 86(4): 635-647. [22] Urbaneja A, Monton H, Molla O. Suitability of the tomato borer Tuta absoluta as prey for Macrolophus pygmaeus and Nesidiocoris tenuis[J]. Journal of Applied Entomology, 2009, 133(4): 292-296. [23] Jaworski C C, Bompard A, Genies L, et al. Preference and prey switching in a generalist predator attacking local and invasive alien pests[J]. PLoS ONE, 2013, 8(12): e82231. [24] Lins J C, van Loon J J A, Bueno V H P, et al. Response of the zoophytophagous predators Macrolophus pygmaeus and Nesidiocoris tenuis to volatiles of uninfested plants and to plants infested by prey or conspecifics[J]. BioControl, 2014, 59(6): 707-718. [25] Chailleux A, Biondi A, Han P, et al. Suitability of the pest-plant system Tuta absoluta (Lepidoptera: Gelechiidae)–tomato for Trichogramma (Hymenoptera: Trichogrammatidae) parasitoids and insights for biological control[J]. Journal of Economic Entomology, 2013, 106(6): 2310-2321. [26] van Lenteren J C, Hemerik L, Lins J C, et al. Functional responses of three neotropical mirid predators to eggs of Tuta absoluta on tomato[J]. Insects, 2016, 7(3): 34. [27] Silva D B, Bueno V H P, Montes F C, et al. Population growth of three mirid predatory bugs feeding on eggs and larvae of Tuta absoluta on tomato[J]. BioControl, 2016, 61(5): 545-553. [28] Van Lenteren J C. Can recently found Brazilian hemipteran predatory bugs control Tuta absoluta[J]. IOBC-WPRS Bulletin, 2012, 80: 63-67. [29] Zappalà L, Siscaro G, Biondi A, et al. Efficacy of sulphur on Tuta absoluta and its side effects on the predator Nesidiocoris tenuis: T. absoluta control with sulphur[J]. Journal of Applied Entomology, 2012, 136(6): 401-409. [30] Ferracini C, Bueno V H P, Dindo M L, et al. Natural enemies of Tuta absoluta in the Mediterranean basin, Europe and south America[J]. Biocontrol Science and Technology, 2019, 29(6): 578-609. [31] Ingegno B L, Messelink G J, Leman A, et al. Development and thermal activity thresholds of european mirid predatory bugs[J]. Biological Control, 2021, 152: 104423. [32] Bayram Y, Bekta Ö, Büyük M, et al. A survey of tomato leafminer (Tuta absoluta Meyrick) (Lepidoptera: Gelechiidae) and its natural enemies in the South-east Anatolia Region[J]. Türkiye Biyolojik Mücadele Dergisi, 2014, 1: 99-110. [33] Abraços D, Ramos S, Valente F, et al. Functional response and predation rate of Dicyphus cerastii Wagner (Hemiptera: Miridae)[J]. Insects, 2021, 12(6): 530. [34] Queiroz O S, Ramos R S, Gontijo L M, et al. Functional response of three species of predatory Pirate bugs attacking eggs of Tuta absoluta (Lepidoptera: Gelechiidae)[J]. Environmental Entomology, 2015, 44(2): 246-251. [35] Miranda M M M, Picanço M C, Zanuncio J C, et al. Impact of integrated pest management on the population of leafminers, fruit borers, and natural enemies in tomato[J]. Ciência Rural, 2005, 35: 204-208. [36] 蒋正雄, 吴道慧, 羊绍武, 等. 溴氰菊酯对南方小花蝽捕食番茄潜叶蛾能力的影响[J]. 植物保护, 2022, 48(6): 127-132. [37] Speranza S, Melo M C, Luna M G, et al. First record of Zelus obscuridorsis (Hemiptera: Reduviidae) as a predator of the South American tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae)[J]. Florida Entomologist, 2014: 295-297. [38] 杨韵, 孙淦琳, 王文倩, 等. 益蝽对番茄潜叶蛾的捕食行为及捕食能力研究[J]. 环境昆虫学报, 2023, 45(1): 179-188. [39] Yang G Q, Fan W, Zhang Q, et al. Predatory function of Harmonia axyridis and Propylea japonica larvae to young larvae of Tuta absoluta[J]. Chinese Journal of Biological Control, 2022, 38(4): 959-966. [40] Schuman M C, Baldwin I T. The layers of plant responses to insect herbivores[J]. Annual Review of Entomology, 2016, 61(1): 373-394. [41] Urbaneja A, Tapia G, Stansly P. Influence of host plant and prey availability on developmental time and surviorship of Nesidiocoris tenius (Het.: Miridae)[J]. Biocontrol Science and Technology, 2005, 15(5): 513-518. [42] Picanco M C, Bacci L, Queiroz R B, et al. Social wasp predators of Tuta absoluta[J]. Sociobiology, 2011, 58(3): 621-633. [43] Geervliet J B F, Posthumus M A, Vet L E M, et al. Comparative analysis of headspace volatiles from different caterpillar-infested or uninfested food plants of Pieris species[J]. Journal of Chemical Ecology, 1997, 23(12): 2935-2954. [44] Sivakumar T, Josephrajkumar A, Anitha N. First report of tomato pinworm, Tuta absoluta (Meyrick) on egg plant Solanam melongena L. from Kerala, India[J]. Entomology, 2017, 42(4): 335-338. [45] Ismoilov K, Wang M, Jalilov A, et al. First report using a native lacewing species to control Tuta absoluta: from laboratory trials to field assessment[J]. Insects, 2020, 11(5): 286. [46] Metwally A M, Momen F M, Nasr A K, et al. Prey suitability of Tuta absoluta larvae-(Lepidoptera: Gelechiidae) for three predatory Phytoseiid Mites (Acari: Phytoseiidae) under laboratory conditions[J]. Acta Phytopathologica et Entomologica Hungarica, 2015, 50(1): 105-113. [47] Momen F, Metwally A, Nasr A, et al. First report on suitability of the tomato borer Tuta absoluta eggs (Lepidoptera: Gelechiidae) for eight predatory phytoseiid mites (Acari: Phytoseiidae) under laboratory conditions[J]. Acta Phytopathologica et Entomologica Hungarica, 2014, 48(2): 321-331. [48] Al-Azzazy M M, Alhewairini S S, Abdel-Baky N F, et al. Evaluation of the effectiveness of Neoseiulus cucumeris (Oudemans) as a predator of Tuta absoluta (Meyrick)[J]. Brazilian Journal of Biology, 2022, 82: e255753. [49] Roberts-McEwen T A, Deutsch E K, Mowery M A, et al. Group-living spider Cyrtophora citricola as a potential novel biological control agent of the tomato pest Tuta absoluta[J]. Insects, 2022, 14(1): 34. [50] Legaspi J C. Life history of Podisus maculiventris (Heteroptera: Pentatomidae) adult females under different constant temperatures[J]. Environmental Entomology, 2004, 33(5): 1200-1206. [51] Denez M D, Bueno A D F, Pasini A, et al. Biological parameters of Podisus nigrispinus (Hemiptera: Pentatomidae) fed with different soybean insect pests[J]. Annals of the Entomological Society of America, 2014, 107(5): 967-974. [52] Mollá O, Biondi A, Alonso-Valiente M, et al. A comparative life history study of two mirid bugs preying on Tuta absoluta and Ephestia kuehniella eggs on tomato crops: implications for biological control[J]. BioControl, 2014, 59(2): 175-183. [53] Castañé C, Zapata R. Rearing the predatory bug Macrolophus caliginosus on a meat-based diet[J]. Biological Control, 2005, 34(1): 66-72. [54] Sanchez J A. Density thresholds for Nesidiocoris tenuis (Heteroptera: Miridae) in tomato crops[J]. Biological Control, 2009, 51(3): 493-498. [55] Vandekerkhove B, De Clercq P. Pollen as an alternative or supplementary food for the mirid predator Macrolophus pygmaeus[J]. Biological Control, 2010, 53(2): 238-242. [56] Bueno V H P, van Lenteren J C, Lins J C, et al. New records of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) predation by Brazilian Hemipteran predatory bugs[J]. Journal of Applied Entomology, 2013, 137(1-2): 29-34. [57] Ingegno B L, Ferracini C, Gallinotti D, et al. Evaluation of the effectiveness of Dicyphus errans (Wolff) as predator of Tuta absoluta (Meyrick)[J]. Biological Control, 2013, 67(2): 246-252. [58] Cagnotti C L, Arias A E, Ermantraut E N, et al. Life history study of the mirid Tupiocoris cucurbitaceus feeding on Tuta absoluta eggs: implications for biological control and its combination with inherited sterility[J]. Biocontrol, 2021, 66(2): 207–216. [59] van Lenteren J C, Bueno V H P, Calvo F J, et al. Comparative effectiveness and injury to tomato plants of three neotropical mirid predators of Tuta absoluta (Lepidoptera: Gelechiidae)[J]. Journal of Economic Entomology, 2018, 111(3): 1080-1086. [60] van Lenteren J C, Bueno V H P, Smit J, et al. Predation of Tuta absoluta eggs during the nymphal stages of three Neotropical mirid predators on tomato[J]. Bulletin of Insectology, 2017, 70(1): 69-74. [61] Arno J, Sorribas R, Prat M, et al. Tuta absoluta, a new pest in IPM tomatoes in the northeast of Spain[J]. IOBC/WPRS Bulletin, 2009, 49: 203-208. [62] Eubanks M D, Denno R F. Host plants mediate omnivore-herbivore interactions and influence prey suppression[J]. Ecology, 2000, 81(4): 936947. [63] Jamwal R, Sharma P L, Verma S C, et al. Demographics and functional response of Blaptostethus pallescens preying on Tuta absoluta[J]. Phytoparasitica, 2021, 49(4): 589-601. [64] Al-Atawi F J. Phytophagous and predaceous mites associated with vegetable crops from Riyadh, Saudi Arabia[J]. Saudi Journal of Biological Sciences, 2011, 18(3): 239-246. [65] Al-Shemmary K A. The availability of rearing Neoseiulus cucumeris (Oud.) and Neoseiulus barkeri (Hughes) (Acari: Phytoseiidae) on three insect egg species[J]. Egyptian Journal of Biological Pest Control, 2018, 28(1): 79-87. [66] Jafari S, Bazgir F. Life history traits of predatory mite Typhlodromus (Anthoseius) bagdasarjani (Phytoseiidae) fed on Cenopalpus irani (Tenuipalpidae) under laboratory conditions[J]. Systematic and Applied Acarology, 2015, 20(4): 366-374. [67] 周军辉, 李鹏雷, 祖农乃吾扎提, 等. 龟纹瓢虫对柑橘木虱的捕食功能反应及猎物偏好性[J]. 植物保护学报, 2020, 47(5): 1062-1070. [68] Holling C S. Some characteristics of simple types of predation and parasitism[J]. The Canadian Entomologist, 1959, 91(7): 385-398. [69] Pereira R R, Picanço M C, Santana Jr P A, et al. Insecticide toxicity and walking response of three pirate bug predators of the tomato leaf miner Tuta absoluta[J]. Agricultural and Forest Entomology, 2014, 16(3): 293-301. [70] Ballal C R, Akbar S A, Yamada K, et al. Annotated catalogue of the flower bugs from India (Heteroptera: Anthocoridae, Lasiochilidae)[J]. Acta Entomologica Musei Nationalis Pragae, 2018, 58(1): 207-226. [71] Michaelides G, Sfenthourakis S, Pitsillou M, et al. Functional response and multiple predator effects of two generalist predators preying on Tuta absoluta eggs[J]. Pest Management Science, 2018, 74(2): 332-339. [72] Chailleux A, Biondi A, Han P, et al. Suitability of the pest-plant system Tuta absoluta (Lepidoptera: Gelechiidae)-tomato for Trichogramma (Hymenoptera: Trichogrammatidae) parasitoids and insights for biological control[J]. Journal of Economic Entomology, 2013, 106(6): 2310-2321. [73] Mohammadpour M, Michaud J P, Hosseini M, et al. Age and parasitism status of Tuta absoluta eggs alter the foraging responses of the predator Nabis pseudoferus[J]. BioControl, 2021, 66(3): 395-406. [74] Mirhosseini M A, Fathipour Y, Soufbaf M, et al. Implications of using two natural enemies of Tuta absoluta (Lepidoptera: Gelechiidae) toward tomato yield enhancement[J]. Bulletin of Entomological Research, 2019, 109(05): 617-625. [75] Denis C, Riudavets J, Alomar O, et al. Dolichogenidea gelechiidivoris Marsh (Hymenoptera: Braconidae), a new biological control agent of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in the Mediterranean basin[J]. IOBC/WPRS Bulletin, 2023, 167: 37-38. [76] Chailleux A, Droui A, Bearez P, et al. Survival of a specialist natural enemy experiencing resource competition with an omnivorous predator when sharing the invasive prey Tuta absoluta[J]. Ecology and Evolution, 2017, 7(20): 8329-8337. [77] Calvo F J, Soriano J D, Stansly P A, et al. Can the parasitoid Necremnus tutae (Hymenoptera: Eulophidae) improve existing biological control of the tomato leafminer Tuta aboluta (Lepidoptera: Gelechiidae)?[J]. Bulletin of Entomological Research, 2016, 106(4): 502-511. [78] Arnó J, Gabarra R. Side effects of selected insecticides on the Tuta absoluta (Lepidoptera: Gelechiidae) predators Macrolophus pygmaeus and Nesidiocoris tenuis (Hemiptera: Miridae)[J]. Journal of Pest Science, 2011, 84(4): 513-520. [79] Madbouni M A Z, Samih M A, Qureshi J A, et al. Compatibility of insecticides and fungicides with the zoophytophagous mirid predator Nesidiocoris tenuis[J]. PLoS ONE, 2017, 12(11): e0187439. [80] Passos L C, Soares M A, Collares L J, et al. Lethal, sublethal and transgenerational effects of insecticides on Macrolophus basicornis, predator of Tuta absoluta[J]. Entomologia Generalis, 2018, 38(2): 127-143. [81] Pilkington L J, Messelink G, van Lenteren J C, et al. “Protected Biological Control"–biological pest management in the greenhouse industry[J]. Biological Control, 2010, 52(3): 216-220. [82] Crowther L I, Wilson K, Wilby A. The impact of field margins on biological pest control: a meta-analysis[J]. BioControl, 2023, 68(4): 387-396. [83] Han P, Desneux N, Becker C, et al. Bottom-up effects of irrigation, fertilization and plant resistance on Tuta absoluta: implications for Integrated Pest Management[J]. Journal of Pest Science, 2019, 92(4): 1359-1370. [84] Han P, Lavoir A V, Rodriguez-Saona C, et al. Bottom-up forces in agroecosystems and their potential impact on arthropod pest management[J]. Annual Review of Entomology, 2022, 67(1): 239-259. [85] Hunter M D, Price P W. Playing chutes and ladders: heterogeneity and the relative roles of bottom-up and top-sown forces in natural communities[J]. Ecology, 1992, 73(3): 724-732. [86] Denno R F, Gratton C, Peterson M A, et al. Bottom-up forces mediate natural-enemy impact in a phytophagous insect community[J]. Ecology, 2002, 83(5): 1443-1458. [87] Han P, Rodriguez-Saona C, Zalucki M P, et al. A theoretical framework to improve the adoption of green integrated pest management tactics[J]. Communications Biology, 2024, 7: 337. [88] Naranjo S E, Ellsworth P C, Frisvold G B. Economic value of biological control in integrated pest management of managed plant systems[J]. Annual Review of Entomology, 2015, 60(1): 621-645. [89] 胡珊珊, 谢丹, Ismoilov Khasan, 等. 上行效应与下行效应在番茄潜叶蛾防控中的应用[J]. 植物保护学报, 2024, 51(1): 1-11. |
[1] | 蒋正雄, 陈恒, 孙英, 周顺文, 张金龙, 陈国华, 朱清清, 张晓明. 苏云金芽胞杆菌G033A对三种赤眼蜂寄生番茄潜叶蛾能力的影响[J]. 中国生物防治学报, 2024, 40(3): 524-531. |
[2] | 田艳丽, 杨亦心, 章雨璐, 王晓伟, 刘银泉. 寄主植物及猎物对杂食性天敌烟盲蝽若虫存活和发育的影响[J]. 中国生物防治学报, 2024, 40(3): 542-549. |
[3] | 刘洪宇, 牛昕泽, 孙旸, 赵宇, 路杨, 隋丽, 李启云, 张正坤. 球孢白僵菌病毒BbCV2的流行及其遗传多样性[J]. 中国生物防治学报, 2024, 40(3): 592-599. |
[4] | 阮妙鸿, 郑秀琴, 甘林, 黄伟群, 代玉立, 兰成忠, 杨秀娟. 不同鲜食玉米品种鞘腐病抗病性及生防菌剂防病效果研究[J]. 中国生物防治学报, 2024, 40(3): 652-660. |
[5] | 林子涵, 张思雨, 康华军, 袁晓伟, 李兴盛, 石延霞, 谢学文, 李磊, 范腾飞, 李宝聚, 柴阿丽. 十字花科根肿病拮抗菌贝莱斯芽胞杆菌ZF72分离鉴定及生防效果研究[J]. 中国生物防治学报, 2024, 40(3): 717-726. |
[6] | 张雅倩, 曲毓立, 李保平. 蠋蝽成虫对黏虫生长发育和繁殖的非取食效应[J]. 中国生物防治学报, 2024, 40(2): 248-256. |
[7] | 李晓梦, 刘彬, 田椿燕, 张阳, 徐文平. 贝莱斯芽胞杆菌S297对生菜菌核病的防治效果[J]. 中国生物防治学报, 2024, 40(2): 399-410. |
[8] | 付麟雲, 李 晶, 李 娜, 刘锦霞, 丁 品, 聂垚琰, 武建荣, 杨 成. 链霉菌SS9-1发酵条件优化及其对番茄灰霉病的防治效果研究 [J]. 中国生物防治学报, 2024, 40(1): 126-136. |
[9] | 覃诗扬, 陆凌晨, 谢学文, 石延霞, 柴阿丽, 王远宏, 李宝聚, 李 磊. 生防菌ZF510的分离鉴定及其对白菜细菌性软腐病的防治效果研究 [J]. 中国生物防治学报, 2024, 40(1): 146-156. |
[10] | 刘 明, 王 昕, 高 涵, 郭永霞. 一株菜豆普通细菌性疫病拮抗细菌的分离鉴定及其生防效果 [J]. 中国生物防治学报, 2024, 40(1): 157-166. |
[11] | 邓声坤, 雷锋杰, 张焕荣, 龙漪萍, 姜懿轩, 张爱华. 人参产铁载体拮抗细菌GR-39的筛选鉴定及发酵条件优化 [J]. 中国生物防治学报, 2024, 40(1): 167-177. |
[12] | 王巧, 杨龙, 潘云飞, 李海强, 陆宴辉. 多异瓢虫对核桃黑斑蚜的捕食作用[J]. 中国生物防治学报, 2023, 39(6): 1289-1294. |
[13] | 任鹏, 李治模, 申修贤, 王雄, 于晓飞, 刘健锋, 黄纯杨, 杨茂发. 食蚜瘿蚊对高粱蚜的控制潜能[J]. 中国生物防治学报, 2023, 39(6): 1327-1333. |
[14] | 白雪莹, 韩剑, 孙博源, 宋淑敏, 罗明, 孙丽英. 梨火疫病和梨腐烂病生防潜力粘细菌的筛选鉴定及室内防效评价[J]. 中国生物防治学报, 2023, 39(6): 1384-1397. |
[15] | 王飞, 杨瑾, 李绍建, 李雪梦, 文艺, 赵莹, 秦艳红, 高素霞, 刘玉霞, 鲁传涛. 丹参根腐病菌拮抗菌株贝莱斯芽胞杆菌Bv1-4的筛选及盆栽防效[J]. 中国生物防治学报, 2023, 39(6): 1398-1407. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 《中国生物防治学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发
技术支持:support@magtech.com.cn