[1] Fan H, Zhang Z, Li Y, et al. Biocontrol of bacterial fruit blotch by Bacillus subtilis 9407 via surfactin-mediated antibacterial activity and colonization[J]. Frontiers in Microbiology, 2017, 8: 1973. [2] Henry G, Deleu M, Jourdan E, et al. The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immune-related defense responses[J]. Cellular Microbiology 2011, 13(11): 1824-1837. [3] Kawagoe Y, Shiraishi S, Kondo H, et al. Cyclic lipopeptide iturin A structure-dependently induces defense response in Arabidopsis plants by activating SA and JA signaling pathways[J]. Biochemical Biophysical Research Communications, 2015, 460(4): 1015-1020. [4] Li Y, Heloir M C, Zhang X, et al. Surfactin and fengycin contribute to the protection of a Bacillus subtilis strain against grape downy mildew by both direct effect and defence stimulation[J]. Molecular Plant Pathology, 2019, 20(8): 1037-1050. [5] 卓富彦, 张宏军, 刘万才, 等. 我国微生物农药在粮食作物上应用回顾及发展建议[J]. 中国生物防治学报, 2023, 39(4): 747-751. [6] Singh S, Sequeira RA, Kumar P, et al. Selective partition of lipopeptides from fermentation broth: A green and sustainable approach[J]. ACS Omega, 2022, 7(50): 46646-46652. [7] Yaraguppi D A, Bagewadi Z K, Patil N R, et al. Iturin: A Promising cyclic lipopeptide with diverse applications[J]. Biomolecules, 2023, 13(10): 1515. [8] Arrebola E, Jacobs R, Korsten L. Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens[J]. Journal of Applied Microbiology, 2010, 108(2): 386-395. [9] Zhou S, Liu G, Zheng R, et al. Structural and functional insights into Iturin W, a novel lipopeptide produced by the deep-Sea bacterium Bacillus sp. strain wsm-1[J]. Applied and Environmental Microbiology, 2020, 86(21): e01597-20. [10] Lam V B, Meyer T, Arias A A, et al. Bacillus cyclic lipopeptides iturin and fengycin control rice blast caused by Pyricularia oryzae in potting and acid sulfate soils by direct antagonism and induced systemic resistance[J]. Microorganisms, 2021, 9(7): 1441. [11] Peng W, Zhong J, Yang J, et al. The artificial neural network approach based on uniform design to optimize the fed-batch fermentation condition: application to the production of iturin A[J]. Microbial Cell Factories, 2014, 13(1): 54. [12] Yue H, Zhong J, Li Z, et al. Optimization of iturin A production from Bacillus subtilis ZK-H2 in submerge fermentation by response surface methodology[J]. 3 Biotechnology, 2021, 11(2): 36. [13] Wu J Y, Liao J H, Shieh C J, et al. Kinetic analysis on precursors for iturin A production from Bacillus amyloliquefaciens BPD1[J]. Journal of Bioscience Bioengineering, 2018, 126(5): 630-635. [14] 张荣胜, 于俊杰, 齐中强, 等. 解淀粉芽胞杆菌Jt84防治水稻稻曲病田间应用技术研究[J]. 中国生物防治学报, 2021, 37(3): 525-530. [15] Zhang R S, Wang F G, Qi Z Q, et al. Iturins produced by Bacillus velezensis Jt84 play a key role in the biocontrol of rice blast disease[J]. Biological Control, 2022, 174: 105001. [16] Crane J M, Gibson D M, Vaughan R H, et al. Iturin levels on wheat spikes linked to biological control of Fusarium head blight by Bacillus amyloliquefaciens[J]. Phytopathology, 2013, 103(2): 146-155. [17] Calvo H, Mendiara I, Arias E, et al. The role of iturin A from B. amyloliquefaciens BUZ-14 in the inhibition of the most common postharvest fruit rots[J]. Food Microbiology, 2019, 82: 62-69. [18] Xiao J, Guo X, Qiao X, et al. Activity of fengycin and iturin A isolated from Bacillus subtilis Z-14 on gaeumannomyces graminis var. tritici and soil microbial diversity[J]. Front Microbiology, 2021, 12: 682437. [19] Revankar A G, Bagewadi Z K, Bochageri N P, et al. Response surface methodology based optimization of keratinase from Bacillus velezensis strain ZBE1 and nanoparticle synthesis, biological and molecular characterization[J]. Saudi Journal of Biological Sciences, 2023, 30(10): 103787. [20] Abdelkader I, Ben Mabrouk S, Hadrich B, et al. Optimization using response surface methodology of phospholipase C production from Bacillus cereus suitable for soybean oil degumming[J]. Preparative Biochemistry and Biotechnology, 2023, 53(10): 1165-1175. [21] Rath S, Paul M, Behera H K, et al. Response surface methodology mediated optimization of Lignin peroxidase from Bacillus mycoides isolated from Simlipal Biosphere Reserve, Odisha, India[J]. Journal of Genetic Engineering Biotechnology, 2022, 20(1): 2. [22] 乔佳慧子, 沈硕, 呼荣. 响应面法优化提高萎缩芽胞杆菌E20303抑制马铃薯干腐病病原菌活性的研究[J].微生物学通报, 2022, 49(7): 2411-2427. [23] 沈佳慧, 乔俊卿, 左杨, 等. 贝莱斯芽胞杆菌YL2021高产嗜铁素的摇瓶发酵工艺优化[J]. 中国生物防治学报, 2023, 39(4): 861-874. [24] 乔俊卿, 孙凯, 刘永锋, 等. 芽胞杆菌工程菌株B9BD产表面活性素发酵培养基优化[J]. 中国生物防治学报, 2022, 38(2): 383-392. |