[1] 苏代发, 童江云, 杨俊誉, 等. 中国草莓属植物种质资源的研究、开发与利用进展[J]. 云南大学学报(自然科学版), 2018, 40(6): 1261-1276. [2] He Y L, Chen J, Tang C, et al. Genetic diversity and population structure of fusarium commune causing strawberry root rot in southcentral china[J]. Genes, 2022, 13(5): 899. [3] 宁志怨, 董玲, 廖华俊, 等. 安徽省长丰县草莓根腐病病原的鉴定[J]. 安徽农业大学学报, 2017, 44(1): 130-134. [4] 苏代发, 代庆忠, 严聪文, 等. 草莓根腐病及其生物防治研究进展[J]. 江苏农业科学, 2022, 50(24): 16-26. [5] 侯圣凡, 华战迎, 刘峻杰, 等. 我国草莓胶孢炭疽菌的多基因联合鉴定与致病性分析[J]. 中国农业大学学报, 2022, 27(4): 82-94. [6] Husaini A M, Neri D. Strawberry growth, development and diseases[M]. London: CAB I Publishing, 2016: 120-136. [7] 姚锦爱, 黄鹏, 赖宝春, 等. 贝莱斯芽胞杆菌ZZBV-3的鉴定及其对草莓根腐病的防效[J]. 中国生物防治学报, 2021, 37(1): 172-177. [8] 赵雨萌, 李金婷, 石昊, 等. 引起草莓根腐病的镰刀菌种类鉴定[J]. 植物病理学报, 2023(53): 1-8. [9] 郭书普. 新版果树病虫害防治彩色图鉴[M]. 北京: 中国农业出版社, 2010:158-159. [10] Zveibil A, Freeman S. First report of crown and root rot in strawberry caused by macrophomina phaseolina in israel[J]. Plant Disease, 2005, 89(9): 1014. [11] 赵秀娟, 王树桐, 张凤巧, 等. 草莓根腐病研究进展[J]. 中国农学通报, 2006, 22(8): 419-422. [12] 夏冰, 郑书恒, 胡学军. 草莓根腐病发生规律与综合防治技术[J]. 中国植保导刊, 2020, 40(8): 30-34. [13] 王晴, 李林, 朱文达, 等. 土壤熏蒸剂棉隆联合太阳能消毒防治草莓土传病害效果及经济效益分析[J]. 植物保护, 2024, 50(1): 339-346. [14] Zhang D Q, Yan D D, Cheng H Y, et al. Effects of multi-year biofumigation on soil bacterial and fungal communities and strawberry yield[J]. Environmental Pollution, 2020, 256: 113415. [15] El-Sheikh, A E, Li D, et al. Residue analysis and risk exposure assessment of multiple pesticides in tomato and strawberry and their products from markets[J]. Foods, 2023, 12(10): 1936. [16] Liu Y, Teng K, Wang T, et al. Antimicrobial bacillus velezensis hc6: production of three kinds of lipopeptides and biocontrol potential in maize[J]. Journal of Applied Microbiology, 2020, 128(1): 242-254. [17] Fan H C, He P, Xu S T, et al. Banana disease-suppressive soil drives bacillus assembled to defense fusarium wilt of banana[J]. Frontiers in Microbiology, 2023, 14: 1211301. [18] 王麒, 许婧霞, 张亚妮, 等. 贝莱斯芽胞杆菌(Bacillus velezensis)JJYY防控土传病害效果评价及其全基因组测序分析和抗菌成分鉴定[J]. 微生物学通报, 2024, 51(1): 155-171. [19] 赖多, 康向辉, 邵雪花, 等. 印楝渣生物药肥对香蕉生长和香蕉枯萎病的影响[J]. 华南农业大学学报, 2017, 38(4): 30-36. [20] 张龙来, 康向辉, 魏孝义, 等. 1株解淀粉芽胞杆菌HN011抑菌次级代谢产物的分析[J]. 华南农业大学学报, 2016, 37(1): 63-69. [21] Tao C Y, Li R, Xiong W, et al. Bio-organic fertilizers stimulate indigenous soil pseudomonas populations to enhance plant disease suppression[J]. Microbiome, 2020, 8(1): 137. [22] 姜莉莉, 王开运, 武玉国, 等. 含高效固氮解淀粉芽胞杆菌生物有机肥在草莓上的应用效果[J]. 北方园艺, 2018(20): 7-12. [23] 邓振山, 赵龙飞, 张薇薇, 等. 银杏内生真菌的分离及其对苹果腐烂病病原菌的拮抗作用[J]. 西北植物学报, 2009, 29(3): 608-613. [24] 李威茜. 解淀粉芽胞杆菌BA-26抑菌机理及对马铃薯防病促生作用[D]. 天津: 河北工业大学, 2021. [25] 陈秀娟, 陈卫平, 糜林, 等. 南方草莓叶面积计算方法的研究[J]. 中国农学通报, 2009, 25(14): 190-193. [26] Vestberg A, Kukkonen S, Saari K, et al. Microbial inoculation for improving the growth and health of micropropagated strawberry[J]. Applied Soil Ecology, 2004, 27(3): 243-258. [27] 孙成成, 丁伟, 潘兴兵, 等. 影响微生物菌剂应用稳定性的因素分析[J]. 植物医生, 2019, 32(4): 19-23. [28] 孔祥生. 植物生理学实验技术[M]. 北京: 中国农业出版社, 2008:164-175. [29] Abd-El-Kareem F, Elshahawy I E, Abd-Elgawad M M M. Application of bacillus pumilus isolates for management of black rot disease in strawberry[J]. Egyptian Journal of Biological Pest Control, 2021, 31(1): 25. [30] 邢坤. 芽胞杆菌菌肥的研制及其对草莓根腐病的生防效果[D]. 咸阳: 西北农林科技大学, 2023. [31] 蔡蜨, 李心丹, 邓丽莉, 等. 抗菌肽PAF26对采后李果实褐腐菌的抑菌效果及机理[J]. 食品科学, 2020, 41(23): 221-227. [32] Blake C, Christensen M N, Kovacs A T. Molecular aspects of plant growth promotion and protection by bacillus subtilis[J]. Molecular Plant-Microbe Interactions, 2021, 34(1): 15-25. [33] Ji S H, Gururani M A, Chun S. Expression analysis of rice pathogenesis-related proteins involved in stress response and endophytic colonization properties of gfp-tagged bacillus subtilis cb-r05[J]. Applied Biochemistry and Biotechnology, 2014, 174(1): 231-241. [34] 王静怡, 佐长赓, 牛新湘, 等. 生防菌在棉田土壤中定殖数量与防病作用相关性[J]. 新疆农业科学, 2023, 60(1): 178-184. [35] 董爱菊, 邱慧珍, 董莉, 等. 类芽胞杆菌QHZ11-gfp在马铃薯植株上的定殖特征及促生效果[J]. 微生物学通报, 2021, 48(11): 4075-4086. [36] 高竞, 方伟, 顾佳悦, 等. 荧光标记解淀粉芽胞杆菌WK1在山核桃树体和土壤中的定殖规律[J]. 浙江农业学报, 2021, 33(1): 77-86. [37] Zhang N, He X, Zhang J, et al. Suppression of fusarium wilt of banana with application of bio- organic fertilizers[J]. Pedosphere, 2014, 24(5): 613-624. [38] 胡鑫. 解淀粉芽胞杆菌HN11 CRISPR/Cas9基因编辑体系的建立及次生代谢产物研究[D]. 广州: 华南农业大学, 2023. [39] 李渊. 解淀粉芽胞杆菌HN11对鱼藤生长及鱼藤酮积累的影响[D]. 广州: 华南农业大学, 2023. [40] Idris E S E, Iglesias D J, Talon M, et al. Tryptophan-dependent production of indole-3-acetic acid (iaa) affects level of plant growth promotion by bacillus amyloliquefaciens fzb42[J]. Molecular Plant-Microbe Interactions, 2007, 20(6): 619. [41] Shao J H, Xu Z H, Zhang N, et al. Contribution of indole-3-acetic acid in the plant growth promotion by the rhizospheric strain bacillus amyloliquefaciens sqr9[J]. Biology and Fertility of Soils, 2015, 51(3): 321-330. [42] 赖宝春, 姚锦爱, 戴瑞卿, 等. 2株拮抗放线菌复合防治番茄青枯病的研究[J]. 中国生物防治学报, 2021, 37(5): 1035-1040. [43] 赵彬涵, 孙宪昀, 黄俊, 等. 微生物在有机固废堆肥中的作用与应用[J]. 微生物学通报, 2021, 48(1): 223-240. [44] Gebologlu N, Durukan A, çetin S C. Determination of heavy metal and nutrient contents and potential use of tobacco waste compost in vegetable seedling production[J]. Asian Journal of Chemistry, 2005, 17(2): 829-834. [45] Huang N, Wang W W, Yao Y L, et al. The influence of different concentrations of bio-organic fertilizer on cucumber fusarium wilt and soil microflora alterations[J]. Plos One, 2017, 12(2): e0171490. [46] Kayikcioglu H H, Okur N. Evolution of enzyme activities during composting of tobacco waste[J]. Waste Management & Research, 2011, 29(11): 1124-1133. [47] Garbeva P, van Veen J A, van Elsas J D. Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness[J]. Annual Review of Phytopathology, 2004, 42(1): 243-270. [48] Shen T, Wang C, Yang H, et al. Identification, solid-state fermentation and biocontrol effects of streptomyces hygroscopicus b04 on strawberry root rot[J]. Applied Soil Ecology, 2016, 103: 36-43. [49] Feld L, Hjelmso M H, Nielsen M S, et al. Pesticide side effects in an agricultural soil ecosystem as measured by amoa expression quantification and bacterial diversity changes[J]. Plos One, 2015, 10(5): e0126080. [50] Li R, Shen Z, Sun L, et al. Novel soil fumigation method for suppressing cucumber fusarium wilt disease associated with soil microflora alterations[J]. Applied Soil Ecology, 2016, 101: 28-36. [51] Li Q J, Zhang D Q, Song Z X, et al. Organic fertilizer activates soil beneficial microorganisms to promote strawberry growth and soil health after fumigation[J]. Environmental Pollution, 2022, 295: 118653. [52] Cloutier A, Tran S, Avis T J. Suppressive effect of compost bacteria against grey mould and rhizopus rot on strawberry fruit[J]. Biocontrol Science and Technology, 2020, 30(2): 143-159. [53] Matic S, Gilardi G, Gullino M L, et al. Emergence of leaf spot disease on leafy vegetable and ornamental crops caused by paramyrothecium and albifimbria species[J]. Phytopathology, 2019, 109(6): 1053-1061. [54] Zhang Y, Yu H, Hu M, et al. Fungal pathogens associated with strawberry crown rot disease in china[J]. Journal of Fungi, 2022, 8(11): 1161. [55] Pereyra S A, Dill-Macky R. Colonization of the residues of diverse plant species by gibberella zeae and their contribution to fusarium head blight inoculum[J]. Plant Disease, 2008, 92(5): 800-807. [56] Feliziani E, Romanazzi G. Postharvest decay of strawberry fruit: etiology, epidemiology, and disease management[J]. Journal of Berry Research, 2016, 6(1): 47-63. [57] Singh R P, Jha P N. The pgpr stenotrophomonas maltophilia sbp-9 augments resistance against biotic and abiotic stress in wheat plants[J]. Frontiers in Microbiology, 2017, 8: 1945. |