中国生物防治学报 ›› 2020, Vol. 36 ›› Issue (5): 646-655.DOI: 10.16409/j.cnki.2095-039x.2020.05.007
蔡晓明, 边磊, 李兆群, 罗宗秀, 修春丽, 陈宗懋
收稿日期:
2020-06-15
出版日期:
2020-10-08
发布日期:
2020-11-20
通讯作者:
陈宗懋,院士,E-mail:zmchen2006@163.com。
作者简介:
蔡晓明,副研究员,E-mail:cxm_d@tricaas.com
基金资助:
CAI Xiaoming, BIAN Lei, LI Zhaoqun, LUO Zongxiu, XIU Chunli, CHEN Zongmao
Received:
2020-06-15
Online:
2020-10-08
Published:
2020-11-20
摘要: 植物挥发物在害虫的寄主选择过程中发挥着重要作用。植物源引诱剂是一类重要的害虫绿色防控产品,也是目前害虫无害化防治的研究热点。但目前大多数研究还未达到田间可应用的程度。其主要原因是田间引诱效率不理想。已有研究显示田间背景气味可干扰昆虫的嗅觉定向,干扰植物源引诱剂的引诱效率。因此对以往忽略的田间背景气味干扰加以重视,可进一步加快植物源引诱剂的研发进程。本文从气味传播与昆虫嗅觉感知、背景气味干扰嗅觉定向、田间背景气味复杂性和其对引诱剂的干扰等方面进行了综述与探讨,并对引诱剂配方组配过程中如何降低田间背景气味的干扰提出了相应的研发策略,以期促进植物源引诱剂的创新发展。
中图分类号:
蔡晓明, 边磊, 李兆群, 罗宗秀, 修春丽, 陈宗懋. 田间背景气味对植物源引诱剂的干扰及相应研发策略[J]. 中国生物防治学报, 2020, 36(5): 646-655.
CAI Xiaoming, BIAN Lei, LI Zhaoqun, LUO Zongxiu, XIU Chunli, CHEN Zongmao. Interference of Field Background Odor with Plant Volatile-based Attractants and Coping Strategies[J]. Chinese Journal Of Biological Control, 2020, 36(5): 646-655.
[1] 陆宴辉, 张永军, 吴孔明. 植食性昆虫的寄主选择机理及行为调控策略[J]. 生态学报, 2008, 28(10):5113-5122. [2] Knolhoff L M, Heckel D G. Behavioral assays for studies of host plant choice and adaptation in herbivorous insects[J]. Annual Review of Entomology, 2014, 59:263-278. [3] Meiners T. Chemical ecology and evolution of plant-insect interactions:a multitrophic perspective[J]. Current Opinion in Insect Science, 2015, 8:22-28. [4] Šimpraga M, Takabayashi J, Holopainen J K. Language of plants:where is the word?[J]. Journal of Integrative Plant Biology, 2016, 58:343-349. [5] 盛子耀, 李为争, 原国辉. 植物气味多样性与昆虫关系的研究进展[J]. 应用昆虫学报, 2019, 56(4):652-661. [6] Laothawornkitkul J, Taylor J E, Paul N D, et al. Biogenic volatile organic compounds in the earth system[J]. New Phytologist, 2009, 183(1):27-51. [7] Beyaert I, Hilker M. Plant odour plumes as mediators of plant-insect interactions[J]. Biological Reviews, 2014, 89(1):68-81. [8] Loreto F, Schnitzler J P. Abiotic stresses and induced BVOCs[J]. Trends in Plant Science, 2010, 15(3):154-166. [9] Niinemets Ü. Mild versus severe stress and BVOCs:threshold, priming and consequences[J]. Trends in Plant Science, 2010, 15(3):145-153. [10] Murlis J, Elkinton J S, Cardé R T. Odor plumes and how insects use them[J]. Annual Review of Entomology, 1992, 37:505-532. [11] Bruce T J A, Wadhams L J, Woodcock C M. Insect host location:a volatile situation[J]. Trends in Plant Science, 2005, 10(6):269-274. [12] Bruce T J A, Pickett J A. Perception of plant volatile blends by herbivorous insects-finding the right mix[J]. Phytochemistry, 2011, 72(13):1605-1611. [13] 蔡晓明, 李兆群, 潘洪生, 等. 植食性害虫食诱剂的研究与应用[J]. 中国生物防治学报, 2018, 34(1):8-35. [14] Lürling M, Scheffer M. Info-disruption:pollution and the transfer of chemical information between organisms[J]. Trends in Ecology & Evolution, 2007, 22(7):374-379. [15] Schrder R, Hilker M. The relevance of background odor in resource location by insects:a behavioral approach[J]. Bioence, 2008, 58:308-316. [16] Barber J R, Crooks K R, Fristrup K M. The costs of chronic noise exposure for terrestrial organisms[J]. Trends in Ecology & Evolution, 2009, 25(3):188-188. [17] Conversano J, Tan E J, Wilgenburg E, et al. Background odour may impair detection of chemical signals for social recognition[J]. Austrial Entomology, 2014, 53(4):432-435. [18] Ord T J, Stamps J A. Alert signals enhance animal communication in ‘noisy’ environments[J]. Proceedings of National Academy of Science of the United States of America, 2008, 105(48):18830-18835. [19] Potvin D A, Parris K M, Mulder R A. Geographically pervasive effects of urban noise on frequency and syllable rate of songs and calls in silvereyes (Zosterops lateralis)[J]. Proceedings of the Royal Society B, 2011, 278(1717):2464-2469. [20] Leonard M L, Horn A G. Ambient noise increases missed detections in nestling birds[J]. Biology Letters, 2012, 8(4):530-532. [21] Conchou L, Lucas P, Meslin C, et al. Insect odorscapes:from plant volatiles to natural olfactory scenes[J]. Frontiers in Physiology, 2019, 10:972. [22] Pannunzi M, Nowotny T. Odor stimuli:not just chemical identity[J]. Frontiers in Physiology, 2019, 10:1428. [23] Cardé R T, Willis M A. Navigational strategies used by insects to find distant, wind-borne sources of odor[J]. Journal of Chemical Ecology, 2008, 34(7):854-866. [24] Celani A, Villermaux E, Vergassola M. Odor landscapes in turbulent environments[J]. Physical Review, 2014, 4:041015. [25] Zimmer R K, Zimmer C A. Dynamic scaling in chemical ecology[J]. Journal of Chemical Ecology, 2008, 34:822-836. [26] Riffell J A, Abrell L, Hildebrand J G. Physical processes and real-time chemical measurement of the insect olfactory environment[J]. Journal of Chemical Ecology, 2008, 34:837-853. [27] Riffell J A, Shlizerman E, Sanders E, et al. Flower discrimination by pollinators in a dynamic chemical environment[J]. Science, 2014, 344(6191):1515-1518. [28] Galizia G C, Rössler W. Parallel olfactory systems in insects:anatomy and function[J]. Annual Review of Entomology, 2010, 55:399-420. [29] Hansson B S, Stensmyr M C. Evolution of insect olfaction[J]. Neuron, 2011, 72(5):698-711. [30] Andersson M N, Löfstedt C, Newcomb R D. Insect olfaction and the evolution of receptor tuning[J]. Frontiers in Ecology and Evolution, 2015, 53(3):1-13. [31] de Fouchier A, Walker W B, Montagné N, et al. Functional evolution of Lepidoptera olfactory receptors revealed by deorphanization of a moth repertoire[J]. Nature Communications, 2017, 8:15709-15709. [32] Bhandawat V, Olsen S R, Gouwens N W, et al. Sensory processing in the Drosophila antennal lobe increases reliability and separability of ensemble odor representations[J]. Nature Neuroscience, 2007, 10(11):1474-1482. [33] Egea-Weiss A, Renner A, Kleineidam C J, et al. High precision of spike timing across olfactory receptor neurons allows rapid odor coding in Drosophila[J]. Science, 2018, 4:76-63. [34] Houot B, Burkland R, Tripathy S, et al. Antennal lobe representations are optimized when olfactory stimuli are periodically structured to simulate natural wing beat effects[J]. Frontiers in Cellular Neuroscience, 2014, 8:159. [35] Huston S J, Stopfer M, Cassenaer S, et al. Neural encoding of odors during active sampling and in turbulent plumes[J]. Neuron, 2015, 88(2):403-418. [36] De Bruyne M, Baker T C. Odor detection in insects:volatile codes[J]. Journal of Chemical Ecology, 2008, 34:882-897. [37] Cardé R T, Charlton R E. Olfactory sexual communication in Lepidoptera:strategy, sensitivity and selectivity//Lewis T, ed. Insect Communication[M]. London:Academic Press, 1984, 241-265. [38] Elkinton J S, Schal C, Ono T, et al. Pheromone puff trajectory and upwind flight of male gypsy moths in a forest[J]. Physiological Entomology, 1987, 12(4):399-406. [39] Baker T C, Fadamiro H Y, Cosse A A. Moth uses fine tuning for odour resolution[J]. Nature, 1998, 393:530. [40] Szyszka P, Stierle J S, Biergans S, et al. The speed of smell:odor-object segregation within milliseconds[J]. PLoS ONE, 2012, 7:e36096. [41] Hare J D. Ecological role of volatiles produced by plants in response to damage by herbivorous insects[J]. Annual Review of Entomology, 2011, 56:161-180. [42] Heil M. Herbivore-induced plant volatiles:targets, perception and unanswered questions[J]. New Phytologist, 2014, 204:297-306. [43] Pierik R, Ballaré C L, Dicke M. Ecology of plant volatiles:taking a plant community perspective[J]. Plant, Cell & Environment, 2014, 37(8):1845-1853. [44] Webster B, Cardé R T. Use of habitat odour by host-seeking insects[J]. Biological Reviews, 2017, 92(2):1241-1249. [45] Trona F, Anfora G, Balkenius A, et al. Neural coding merges sex and habitat chemosensory signals in an insect herbivore[J]. Proceedings of the Royal Society B:Biological Sciences, 2013, 280:20130267. [46] Thöming G, Larsson M C, Hansson B S, et al. Comparison of plant preference hierarchies of male and female moths and the impact of larval rearing hosts[J]. Ecology Letters, 2013, 94(8):1744-1752. [47] Proffit M, Khallaf M A, Carrasco D, et al. ‘Do you remember the first time?’ Host plant preference in a moth is modulated by experiences during larval feeding and adult mating[J]. Ecology Letters, 2015, 18(4):365-374. [48] Yang Z H, Bengtsson M, Witzgall P. Host plant volatiles synergize response to sex pheromone in codling moth, Cydia pomonella[J]. Journal of Chemical Ecology, 2004, 30:619-629. [49] Borrero-Echeverry F, Bengtsson B, Nakamuta K, et al. Plant odor and sex pheromone are integral elements of specific mate recognition in an insect herbivore[J]. Evolution, 2018, 72:2225-2233. [50] Rochat D, Nagnan-le M P, Esteban-Duran J R, et al. Identification of pheromone synergists in the American weevil, Rhynchophorus palmarum, and attraction of related Dynamis borassi (Coleoptera, Curculionidae)[J]. Journal of Chemical Ecology, 2000, 26:155-187. [51] Said I, Renou M, Morin J P, et al. Interactions between acetoin, a plant volatile, and pheromone in Rhynchophorus palmarum:behavioral and olfactory neuron responses[J]. Journal of Chemical Ecology, 2005, 31:1789-1805. [52] Dupuy F, Rouyar A, Deisig N, et al. A background of a volatile plant compound alters neural and behavioral responses to the sex pheromone blend in a moth[J]. Frontiers in Physiology, 2017, 8:e00079. [53] Renou M, Party V, Rouyar A, et al. Olfactory signal coding in an odor background[J]. Biosystems, 2015, 136:35-45. [54] Rouyar A, Party V, Prešern J, et al. A general odorant background affects the coding of pheromone stimulus intermittency in specialist olfactory receptor neurones[J]. PLoS ONE, 2011, 6:e26443. [55] Party V, Hanot C, Said I, et al. Plant Terpenes affect intensity and temporal parameters of pheromone detection in a moth[J]. Chemical Senses, 2009, 34(9):763-774. [56] Party V, Hanot C, Büsser D S, et al. Changes in odor background affect the locomotory response to pheromone in moths[J]. PLoS ONE, 2013, 8:e52897. [57] Hatano E A, Saveer A, Borrero-Echeverry F, et al. A herbivore-induced plant volatile interferes with host plant and mate location in moths through suppression of olfactory signalling pathways[J]. BMC Biology, 2015, 13:75. [58] Rouyar A, Deisig N, Dupuy F, et al. Unexpected plant odor responses in a moth pheromone system[J]. Frontiers in Physiology, 2015, 6:148. [59] Badeke E, Haverkamp A, Hansson B S, et al. A challenge for a male noctuid moth? Discerning the female sex pheromone against the background of plant volatiles[J]. Frontiers in Physiology, 2016, 7:143. [60] Elisa B, Alexander H, Hansson B S, et al. A challenge for a male noctuid moth? Discerning the female sex pheromone against the background of plant volatiles[J]. Frontiers in Physiology, 2016, 7:e00143. [61] Maria H, Harald T. Rising background odor concentration reduces sensitivity of ON and OFF olfactory receptor neurons for changes in concentration[J]. Frontiers in Physiology, 2016, 7:e00063. [62] Morawo T, Fadamiro H. The role of herbivore- and plant-related experiences in intraspecific host preference of a relatively specialized parasitoid[J]. Insect Science, 2019, 26:341-350. [63] Wajnberg É, Bernstein C, van Alphen J. Behavioral Ecology of Insect Parasitoids:from Theoretical Approaches to Field Applications[M]. Malden M A:Wiley-Blackwell, 2008. [64] Koschier E H, Nielsen M C, Spangl B, et al. The effect of background plant odours on the behavioural responses of Frankliniella occidentalis to attractive or repellent compounds in a Y-tube olfactometer[J]. Entomologia Experimentalis et Applicata, 2017, 163:160-169. [65] Mauchline A L, Osborne J L, Martin A P, et al. The effects of non-host plant essential oil volatiles on the behaviour of the pollen beetle Meligethes aeneus[J]. Entomologia Experimentalis et Applicata, 2005, 114(3):181-188. [66] Fancelli M, Borges M, Laumann R A, et al. Attractiveness of host plant volatile extracts to the asian citrus psyllid, Diaphorina citri, is reduced by terpenoids from the non-host cashew[J]. Journal of Chemical Ecology, 2018, 44:397-405. [67] Togni P H B, Laumann R A, Medeiros M A, et al. Odour masking of tomato volatiles by coriander volatiles in host plant selection of Bemisia tabaci biotype B[J]. Entomologia Experimentalis et Applicata, 2010, 136(2):164-173. [68] Büchel K, Austel N, Mayer M, et al. Smelling the tree and the forest:elm background odours affect egg parasitoid orientation to herbivore induced terpenoids[J]. BioControl, 2014, 59(1):29-43. [69] Martelli C, Carlson J R, Emonet T. Intensity invariant dynamics and odor-specific latencies in olfactory receptor neuron response[J]. Journal of Neuroscience Methods, 2013, 33:6285-6297. [70] 娄永根, 程家安. 虫害诱导的植物挥发物:基本特性、生态学功能及释放机制[J]. 生态学报, 2000, 20(6):1097-1106. [71] 蔡晓明, 孙晓玲, 董文霞, 等. 虫害诱导植物挥发物(HIPVs):从诱导到生态功能[J]. 生态学报, 2008, 28(8):3969-3980. [72] 孙仲享, 宋圆圆, 曾任森. 植物挥发物介导的种内与种间关系研究进展[J]. 华南农业大学学报, 2019, 40(5):166-174. [73] Atkinson R, Arey J. Gas-phase tropospheric chemistry of biogenic volatile organic compounds:a review[J]. Atmospheric Environment, 2003, 37:197-219. [74] Goldstein A H, Galbally I E. Known and unexplored organic constituents in the earth's atmosphere[J]. Environmental Science and Technology, 2007, 41(5):1514-1521. [75] Bachy A, Aubinet M, Schoon N, et al. Are BVOC exchanges in agricultural ecosystems overestimated? Insights from fluxes measured in a maize field over a whole growing season[J]. Atmospheric Chemistry and Physics, 2016, 16(8):5343-5356. [76] Schallhart S, Rantala P, Nemitz E, et al. Characterization of total ecosystem-scale biogenic VOC exchange at a Mediterranean oak-hornbeam forest[J]. Atmospheric Chemistry and Physics, 2015, 15(19):27627-27673. [77] Fischbach R J, Staudt M, Zimmer I, et al. Seasonal pattern of monoterpene synthase activities in leaves of the evergreen tree Quercus ilex[J]. Physiologia Plantarum, 2002, 114(3):354-360. [78] Staudt M, Joffre R, Rambal S. How growth conditions affect the capacity of Quercus ilex leaves to emit monoterpenes[J]. New Phytologist, 2003, 158(1):61-73. [79] Staudt M, Byron J, Piquemal K, et al. Compartment specific chiral pinene emissions identified in a maritime pine forest[J]. Science of The Total Environment, 2019, 654:1158-1166. [80] Wiedenmyer C, Friedfeld S, Baugh W, et al. Measurement and analysis of atmospheric concentrations of isoprene and its reaction products in central Texas[J]. Atmospheric Environment, 2011, 35(6):1001-1013. [81] Cai X M, Xu X X, Bian L, et al. Measurement of volatile plant compounds in field ambient air by thermal desorption-gas chromatography-mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2015, 407:9105-9114. [82] Kruidhof H M, Roberts A L, Magdaraog P, et al. Habitat complexity reduces parasitoid foraging efficiency, but does not prevent orientation towards learned host plant odours[J]. Oecologia, 2015, 179:353-361. [83] Ando T, Inomata S, Yamamoto M. Lepidopteran sex pheromones[J]. Topics in Current Chemistry, 2004, 239:51-96. [84] Michal M. Competitiveness of fertilizers with proteinaceous baits applied in Mediterranean fruit fly, Ceratitis capitata Wied (Diptera:Tephritidae) control[J]. Crop Protection, 2009, 28(4):314-318. [85] Hammack L. Corn volatiles as attractants for northern and western corn rootworm beetles (Coleoptera:Chrysomelidae:Diabrotica spp.)[J]. Journal of Chemical Ecology, 1996, 22(7):1237-1253. [86] Casado D, Gemeno C, Avilla J, et al. Diurnal variation of walnut tree volatiles and electrophysiological responses in Cydia pomonella (Lepidoptera:Tortricidae)[J]. Pest Management Science, 2008, 64(7):736-747. [87] Knudsen G K, Bengtsson M, Kobro S, et al. Discrepancy in laboratory and field attraction of apple fruit moth Argyresthia conjugella to host plant volatiles[J]. Physiological Entomology, 2008, 33:1-6. [88] Anfora G, Tasin M, De Cristofaro A, et al. Synthetic grape volatiles attract mated Lobesia botrana females in laboratory and field bioassays[J]. Journal of Chemical Ecology, 2009, 35:1054-1062. [89] Lu P F, Huang L Q, Wang C Z. Identification and field evaluation of pear fruit volatiles attractive to the oriental fruit moth, Cydia molesta[J]. Journal of Chemical Ecology, 2012, 38(8):1003-1016. [90] Cattaneo A M, Bengtsson J M, Borgonovo G, et al. Response of the European grapevine moth Lobesia botrana to somatosensory-active volatiles emitted by the non-host plant Perilla frutescens[J]. Physiological Entomology, 2014, 39:229-236. [91] Landolt P J, Adams T, Davis T S, et al. Spotted wing drosophila, Drosophila suzukii (diptera:drosophilidae), trapped with combinations of wines and vinegars[J]. Florida Entomologist, 2012, 95(2):326-332. [92] Cha D H, Adams T, Rogg H, et al. Identification and field evaluation of fermentation volatiles from wine and vinegar that mediate attraction of spotted wing Drosophila, Drosophila suzukii[J]. Journal of Chemical Ecology, 2012, 38:1419-1431. [93] Cha D H, Adams T, Werle C T, et al. A four-component synthetic attractant for Drosophila suzukii (Diptera:Drosophilidae) isolated from fermented bait headspace[J]. Pest Management Science, 2014, 70(2):324-331. [94] Cha D H, Landolt P J, Adams T B. Effect of chemical ratios of a microbial-based feeding attractant on trap catch of Drosophila suzukii (Diptera:Drosophilidae)[J]. Environmental Entomology, 2017, 46(4):907-915. [95] Cha D H, Hesler S P, Wallingford A K, et al. Comparison of commercial lures and food baits for early detection of fruit infestation risk by Drosophila suzukii (Diptera:Drosophilidae)[J]. Journal of Economic Entomology, 2018, 111(2):645-652. [96] Cha D H, Loeb G M, Linn C E, et al. A multiple-choice bioassay approach for rapid screening of key attractant volatiles[J]. Environmental Entomology, 2018, 47(4):946-950. [97] Cai X M, Xu X X, Bian L, et al. Attractiveness of host volatiles combined with background visual cues to the tea leafhopper[J]. Entomologia Experimentalis et Applicata, 2015, 157:291-299. [98] Cai X, Lei B, Xu X X, et al. Field background odour should be taken into account when formulating a pest attractant based on plant volatiles[J]. Scientific Reports, 2017, 7:41818. [99] Bengtsson M, Jaastad G, Knudsen G, et al. Plant volatiles mediate attraction to host and non-host plant in apple fruit moth, Argyresthia conjugella[J]. Entomologia Experimentalis et Applicata, 2006, 118:77-85. [100] Knudsen G K, Tasin M. Spotting the invaders:A monitoring system based on plant volatiles to forecast apple fruit moth attacks in apple orchards[J]. Basic and Applied Ecology, 2015, 16:354-364. [101] Knudsen G K, Norli H R, Marco T. The ratio between field attractive and background volatiles encodes host-plant recognition in a specialist moth[J]. Frontiers in Plant Science, 2017, 8:2206. [102] Xu X X, Cai X M, Bian L, et al. Does background odor in tea gardens mask attractants? Screening and application of attractants for Empoasca onukii Matsuda[J]. Journal of Economic Entomology, 2017, 110(6):2357-2363. [103] Gregg P C, Socorro A P D, Hawes A J, et al. Developing bisexual attract-and-kill for polyphagous insects:ecological rationale versus pragmatics[J]. Journal of Chemical Ecology, 2016, 42:666-675. [104] Socorro A P D, Gregg P C, Alter D, et al. Development of a synthetic plant volatile-based attracticide for female noctuid moths. I. Potential sources of volatiles attractive to Helicoverpa armigera (Hübner) (Lepidoptera:Noctuidae)[J]. Australian Journal of Entomology, 2010, 49:10-20. [105] 陆宴辉, 赵紫华, 蔡晓明, 等. 我国农业害虫综合防治研究进展[J]. 应用昆虫学报, 2017, 54(3):349-363. |
[1] | 阿曼古力·吐尼亚孜, 阿瓦古丽·艾买提, 安尼瓦尔·库尔班, 李保平, 闫祺. 新型信息素诱剂对新疆梨园蛾类害虫的诱捕效果评价[J]. 中国生物防治学报, 2019, 35(6): 982-986. |
[2] | 孔琳, 李玉艳, 王孟卿, 刘晨曦, 毛建军, 陈红印, 张礼生. 七星瓢虫对草地贪夜蛾低龄幼虫的捕食能力评价[J]. 中国生物防治学报, 2019, 35(5): 715-720. |
[3] | 杨苗苗, 李英梅, 张淑莲, 洪波, 王晶玲, 陈志杰. 烟粉虱MED隐种对植物挥发物的趋性行为[J]. 中国生物防治学报, 2018, 34(5): 663-669. |
[4] | 杜浩, 高旭辉, 刘坤, 赵广, 李贞, 张青文, 刘小侠. 异色瓢虫对梨瘿蚊幼虫的捕食功能反应及捕食偏好[J]. 中国生物防治学报, 2017, 33(6): 811-816. |
[5] | 鲁艳辉, 高广春, 郑许松, 王国荣, 吕仲贤. 不同生育期和氮肥水平对水稻螟虫诱集植物香根草挥发物的影响[J]. 中国生物防治学报, 2016, 32(5): 604-609. |
[6] | 李国平, 封洪云, 封洪强, 黄博, 邱峰. 半固体人工饲料饲养日本通草蛉幼虫对荻草谷网蚜捕食作用[J]. 中国生物防治学报, 2016, 32(2): 161-164. |
[7] | 朱晓强, 丁玉骁, 刘航玮, 周延乐, 张永军, 郭予元. 绿盲蝽气味结合蛋白AlucOBP8的结合特性分析[J]. 中国生物防治学报, 2015, 31(6): 821-829. |
[8] | 陈俊谕1,2 , 陈泰运2 , 符悦冠2 , 张方平2 , 韩冬银2 , 牛黎明2 . 哥德恩蚜小蜂对螺旋粉虱的功能反应研究[J]. , 2013, 29(2): 175-180. |
[9] | 田耀加, 梁广文, 曾玲, 陆永跃. 拟环纹豹蛛对亚洲玉米螟卵及低龄幼虫的捕食效应[J]. , 2012, 28(4): 478-483. |
[10] | 黄建华1 , 罗任华1 , 秦文婧1 , 黄水金1 , 秦厚国1 , 付志飞2 . 巴氏钝绥螨对芦笋上烟蓟马捕食效能研究[J]. , 2012, 28(3): 353-359. |
[11] | 陈文龙1,2 , 王进军1 , 顾丁2 , 李子忠2 . 4种方法研究蚕豆挥发物对南美斑潜蝇及甘蓝潜蝇茧蜂寻找寄主的趋向作用[J]. , 2011, 27(3): 294-301. |
[12] | 郭祥令, 何余容, 潘飞, 王德森, 罗永丽. 植物挥发物在寄生蜂寄主定位中的作用[J]. , 2011, 27(3): 388-393. |
[13] | 王利平1 , 王永模1 , 杜进平1,2 , 张国安1 . 斯氏钝绥螨对朱砂叶螨若螨的捕食作用[J]. , 2011, 27(2): 171-175. |
[14] | 武予清1 ;赵明茜2 ;杨淑斐1 ;段 云1 ;蒋月丽1 . 东亚小花蝽对四种害虫的捕食作用[J]. , 2010, 26(1): 13-17. |
[15] | 杨可胜;程福如;潘泽义;朱加保;刘方志;郑曙峰. 性信息干扰素对棉红铃虫和棉铃虫的控制效果[J]. , 2004, 20(1): 67-69. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 《中国生物防治学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发
技术支持:support@magtech.com.cn