[1] 李增智. 我国利用真菌防治害虫的历史、进展及现状[J]. 中国生物防治学报, 2015, 31(5):699-711. [2] Zimmermann G. Review on safety of the entomopathogenic fungus Metarhizium anisopliae[J]. Biocontrol Science and Technology, 2007, 17(9-10):879-920. [3] Yun H G, Kim D J, Gwak W S, et al. Entomopathogenic fungi as dual control agents against both the pest Myzus persicae and phytopathogen Botrytis cinerea[J]. Mycobiology, 2017, 45(3):192-198. [4] 张维, 彭国雄, 夏玉先. 昆虫病原真菌防控草地贪夜蛾的现状、问题与展望[J]. 中国生物防治学报, 2019, 35(5):674-681. [5] 农向群, 闫多子, 蔡霓, 等. 真菌防治蝗虫研究进展[J]. 中国生物防治学报, doi:10.16409/j.cnki.2095-039x.2021.01.001. [6] Wang C S, Wang S B. Insect pathogenic fungi:genomics, molecular interactions, and genetic improvements[J]. Annual Review of Entomology, 2017, 62:73-90. [7] Fang W G, Azimzadeh P, St Leger R J. Strain improvement of fungal insecticides for controlling insect pests and vector-borne diseases[J]. Current Opinion in Microbiology, 2012, 15(3):232-238. [8] Kim J S, Kassa A, Skinner M, et al. Production of thermotolerant entomopathogenic fungal conidia on millet grain[J]. Journal of Industrial Microbiology & Biotechnology, 2011, 38(6):697-704. [9] Geisler S, Coller J. XRN1:a major 5' to 3' exoribonuclease in eukaryotic cells[J]. The Enzymes, 2012, 31:97-114. [10] Kim W, Miguel-Rojas C, Wang J, et al. Developmental dynamics of long noncoding RNA expression during sexual fruiting body formation in Fusarium graminearum[J]. mBio, 2018, 9(4):e01292-01218. [11] Larimer F W, Stevens A. Disruption of the gene XRN1, coding for a 5'-3' exoribonuclease, restricts yeast cell growth[J]. Gene, 1990, 95(1):85-90. [12] Delorme-Axford E, Abernathy E, Lennemann N J, et al. The exoribonuclease Xrn1 is a post-transcriptional negative regulator of autophagy[J]. Autophagy, 2018, 14(5):898-912. [13] Kumar S, Stecher G, Tamura K. MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7):1870-1874. [14] Wang Z, Jiang Y, Wu H, et al. Genome-wide identification and functional prediction of long non-coding RNAs involved in the heat stress response in Metarhizium robertsii[J]. Frontiers in Microbiology, 2019, 10:2336. [15] Wang Z, Jiang Y, Li Y, et al. MrArk1, an actin-regulating kinase gene, is required for endocytosis and involved in sustaining conidiation capacity and virulence in Metarhizium robertsii[J]. Applied Microbiology and Biotechnology, 2019, 103(12):4859-4868. [16] Stevens A. 5'-exoribonuclease 1:Xrn 1[J]. Methods in enzymology, 2001, 342:251-259. [17] Langeberg C J, Welch W R W, McGuire J V, et al. Biochemical Characterization of Yeast Xrn1[J]. Biochemistry, 2020, 59(15):1493-1507. [18] Jones C I, Zabolotskaya M V, Newbury S F. The 5'-3' exoribonuclease XRN1/Pacman and its functions in cellular processes and development[J]. Wiley Interdisciplinary Reviews-RNA, 2012, 3(4):455-468. [19] Till D D, Linz B, Seago J E, et al. Identification and developmental expression of a 5'-3' exoribonuclease from Drosophila melanogaster[J]. Mechanisms of Development, 1998, 79(1-2):51-55. [20] Blasco-Moreno B, de Campos-Mata L, Bottcher R, et al. The exonuclease Xrn1 activates transcription and translation of mRNAs encoding membrane proteins[J]. Nature Communications, 2019, 10:1298. [21] Medina D A, Jordan-Pla A, Millan-Zambrano G, et al. Cytoplasmic 5'-3' exonuclease Xrnlp is also a genome-wide transcription factor in yeast[J]. Frontiers in Genetics, 2014, 5:UNSP 1. [22] Gunawardene C D, Newburn L R, White K A. A 212-nt long RNA structure in the Tobacco necrosis virus-D RNA genome is resistant to Xrn degradation[J]. Nucleic Acids Research, 2019, 47(17):9329-9342. [23] Pijlman G P, Funk A, Kondratieva N, et al. A highly structured, nuclease-resistant, noncoding RNA produced by flaviviruses is required for pathogenicity[J]. Cell Host & Microbe, 2008, 4(6):579-591. [24] Du Y R, Jin K, Xia Y X. Involvement of MaSom1, a downstream transcriptional factor of cAMP/PKA pathway, in conidial yield, stress tolerances, and virulence in Metarhizium acridum[J]. Applied Microbiology and Biotechnology, 2018, 102(13):5611-5623. [25] Gao Q, Lu Y Z, Yao H Y, et al. Phospholipid homeostasis maintains cell polarity, development and virulence in Metarhizium robertsii[J]. Environmental Microbiology, 2016, 18(11):3976-3990. |