[1] Martín J F. Phosphate control of the biosynthesis of antibiotics and other secondary metabolites is mediated by the PhoR-PhoP system:an unfinished story[J]. Journal of Bacteriology, 2004, 186:5197-5201. [2] Liu G, Chater K F, Chandra G, et al. Molecular regulation of antibiotic biosynthesis in Streptomyces[J]. Microbiology and Molecular Biology Reviews, 2013, 77:112-143. [3] Takano E. Gamma-butyrolactones:Streptomyces signalling molecules regulating antibiotic production and differentiation[J]. Current Opinion in Microbiology, 2006, 9(3):287-294. [4] Ohnishi Y, Kameyama S, Onaka H, et al. The A-factor regulatory cascade leading to streptomycin biosynthesis in Streptomyces griseus:identification of a target gene of the A-factor receptor[J]. Molecular Microbiology, 1999, 34(1):102-111. [5] Chater K F, Bibb M J. Regulation of bacterial antibiotic production[M]. Biotechnology Set, Second Edition, 1997, 57-105. [6] Nasser W, Sylvie R. New insights into the regulatory mechanisms of the LuxR family of quorum sensing regulators[J]. Analytical and Bioanalytical Chemistry, 2007, 387:381-390. [7] Antunes L C M, Ferreira R B R, Lostroh C P, et al. A mutational analysis defines Vibrio fischeri LuxR binding sites[J]. Journal of Bacteriology, 2008, 190:4392-4397. [8] De B I, Raaijmakers J M. Diversity and functional analysis of LuxR-type transcriptional regulators of cyclic lipopeptide biosynthesis in Pseudomonas fluorescens[J]. Applied and Environmental Microbiology, 2009, 75:4753-4761. [9] Danino V E, Wilkinson A, Edwards A, et al. Recipient-induced transfer of the symbiotic plasmid pRL1JI in Rhizobium leguminosarum bv. viciae is regulated by a quorum-sensing relay[J]. Molecular Microbiology, 2003, 50:511-525. [10] Alonso-Hearn M, Eckstein T M, Sommer S. A Mycobacterium avium subsp. paratuberculosis LuxR regulates cell envelope and virulence[J]. Innate Immunity, 2010, 16:235-247. [11] Andersson R A, Eriksson A R B, Heikinheimo R, et al. Quorum sensing in the plant pathogen Erwinia carotovora subsp. carotovora:the role of expREcc[J]. Molecular Plant-microbe Interactions, 2000, 13:384-393. [12] Passador L, Cook J M, Gambello M J, et al. Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication[J]. Science, 1993, 260:1127-1131. [13] Latifi A, Winson M K, Foglino M, et al. Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1[J]. Molecular Microbiology, 1995, 17:333-343. [14] Antoxn N, Santos-Aberturas J, Mendes M V, et al. PimM, a PAS domain positive regulator of pimaricin biosynthesis in Streptomyces natalensis[J]. Microbiology, 2007, 153:3174-3183. [15] Sekurova O N, Brautaset T, Sletta H, et al. In vivo analysis of the regulatory genes in the nystatin biosynthetic gene cluster of Streptomyces noursei ATCC 11455 reveals their differential control over antibiotic biosynthesis[J]. Journal of Bacteriology, 2004, 186:1345-1354. [16] Hur Y A, Choi S S, Sherman D H, et al. Identification of TmcN as a pathway-specific positive regulator of tautomycetin biosynthesis in Streptomyces sp. CK4412[J]. Microbiology, 2008, 154:2912-2919. [17] He W Q, Lei J, Liu Y Y, et al. The LuxR family members GdmRI and GdmRⅡ are positive regulators of geldanamycin biosynthesis in Streptomyces hygroscopicus 17997[J]. Archives of Microbiology, 2008, 189:501-510. [18] 曾洪梅, 张震霖, 石义萍, 等. 原生质体融合提高农抗武夷菌素的效价[J]. 微生物学报, 1995, 35(5):375-380. [19] 程艳, 张克诚, 赵明富, 等. 应用60Coγ射线诱变选育武夷菌素高产菌的研究[J]. 中国农学通报, 2010, 26(2):234-237. [20] 付月灵, 张克诚, 石义萍, 等. 武夷菌素高产菌株的选育[J]. 中国生物防治, 2007, 23(2):195-197. [21] Kieser T, Bibb M J, Buttner M J, et al. Practical streptomyces genetics[M]. The John Innes Foundation, Norwich, UK, 2000. [22] 王立东, 张克诚, 石义萍, 等. 高效液相色谱法测定发酵液中的武夷菌素[J]. 农药, 2008(11):816-817. [23] Flardh K, Buttner M J. Streptomyces morphogenetics:dissecting differentiation in a filamentous bacterium[J]. Nature Reviews Microbiology, 2009, 7:36-49. [24] Chater K F. Differentiation in Streptomyces:the properties and programming of diverse cell-types[J]. Molecular Biology and Biotechnology, 2011, 43:86. [25] McCormick J R, Flärdh K. Signals and regulators that govern Streptomyces development[J]. Fems Microbiology Reviews, 2011, 36:206-231. [26] Antoxn N, Mendes M V, Martín J F, et al. Identification of PimR as a positive regulator of pimaricin biosynthesis in Streptomyces natalensis[J]. Journal of Bacteriology, 2004, 186:2567-2575. [27] Liu Y Y, Ryu H, Ge B B, et al. Improvement of wuyiencin biosynthesis in Streptomyces wuyiensis CK-15 by identification of a key regulator, WysR[J]. Journal of Microbiology and Biotechnology, 2014, 24:1644-1653. [28] Cui H, Ni X P, Liu S J, et al. Characterization of three positive regulators for tetramycin biosynthesis in Streptomyces ahygroscopicus[J]. Fems Microbiology Letters, 2016, 363(12):fnw109. |