[1] Potts S G, Biesmeijer J C, Kremen C, et al. Global pollinator declines:trends, impacts and drivers[J]. Trends in Ecology and Evolution, 2010, 25:345-353. [2] Matson P A, Parton W J, Power A G, et al. Agricultural intensification and ecosystem properties[J]. Science, 1997, 277:504-509. [3] Bommarco R, Kleijn D, Potts S. Ecological intensification:harnessing ecosystem services for food security[J]. Trends in Ecology and Evolution, 2013, 28:230-238. [4] Pretty J, Bharucha Z P. Sustainable intensification in agricultural systems[J]. Annals of Botany, 2014, 114:1571. [5] Losey J E, Vaughan M. The economic value of ecological services provided by insects[J]. BioScience, 2006, 56:311-323. [6] Gurr G M, Wratten S D, Landis D A, et al. Habitat management to suppress pest populations:progress and prospects[J]. Annual Review of Entomology, 2017, 62:91-109. [7] Lu Z X, Zhu P Y, Gurr G M, et al. Mechanisms for flowering plants to benefit arthropod natural enemies of insect pests:Prospects for enhanced use in agriculture[J]. Insect Science, 2014, 21:1-12. [8] Heimpel G E. Linking parasitoid nectar feeding and dispersal in conservation biological control[J]. Biological Control, 2019, 132:36-41. [9] Zemenick A T, Kula R R, Russo L, et al. A network approach reveals parasitoid wasps to be generalized nectar foragers[J]. Arthropod-Plant Interactions, 2019, 13:239-251. [10] Bartual A M, Sutter L, Bocci G, et al. The potential of different semi-natural habitats to sustain pollinators and natural enemies in European agricultural landscapes[J]. Agriculture, Ecosystems & Environment, 2019, 279:43-52. [11] Russell M. A meta-analysis of physiological and behavioral responses of parasitoid wasps to flowers of individual plant species[J]. Biological Control, 2015, 82:96-103. [12] Van Rijn P C J, Wäckers F L. Nectar accessibility determines fitness, flower choice and abundance of hoverflies that provide natural pest control[J]. Journal of Applied Ecology, 2016, 53:925-933. [13] Winkler K, Wäckers F, Bukovinszkine-Kiss G, et al. Sugar resources are vital for Diadegma semiclausum fecundity under field conditions[J]. Basic and Applied Ecology, 2006, 7:133-140. [14] Zhu P Y, Zheng X S, Xie G, et al. Relevance of the ecological traits of parasitoid wasps and nectariferous plants for conservation biological control:a hybrid meta-analysis[J]. Pest Management Science, 2020, 76:1881-1892. [15] Koricheva J, Gurevitch J, Mengersen K. Handbook of meta-analysis in ecology and evolution[M]. Princeton:Princeton University Press, 2013. [16] Viechtbauer W. Conducting Meta-Analyses in R with the meta for package[J]. Journal of Statistical Software, 2010, 36:1-48. [17] R Core Team. A Language and Environment for Statistical Computing[M]. R Foundation for Statistical Computing, 2015. Available at:[URL] https://www.R-project.org/. [18] Araj S E, Shields M W, Wratten S D. Weed floral resources and commonly used insectary plants to increase the efficacy of a whitefly parasitoid[J]. BioControl, 2019, 64:553-561. [19] Hatt S, Osawa N. The role of Perilla frutescens flowers on fitness traits of the ladybird beetle Harmonia axyridis[J]. BioControl, 2019, 64:381-390. [20] Hatt S, Uyttenbroeck R, Lopes T, et al. Effect of flower traits and hosts on the abundance of parasitoids in perennial multiple species wildflower strips sown within oilseed rape (Brassica napus) crops[J]. Arthropod-Plant Interactions, 2018, 12:787-797. [21] Gurr G M, Lu Z X, Zheng X S, et al. Multi-country evidence that crop diversification promotes ecological intensification of agriculture[J]. Nature Plants, 2016, 2(3):16014. [22] Jaworski C C, Xiao D, Xu Q, et al. Varying the spatial arrangement of synthetic herbivore-induced plant volatiles and companion plants to improve conservation biological control[J]. Journal of Applied Ecology, 2019, 56:1176-1188. [23] Shields M W, Johnson A C, Pandey S, et al. History, current situation and challenges for conservation biological control[J]. Biological Control, 2019, 131:25-35. [24] Jervis M A, Kidd N A C, Fitton M G, et al. Flower-visiting by Hymenopteran parasitoids[J]. Journal of Natural History, 1993, 27:67-105. [25] Wäckers F L, van Rijn P C J. Pick and mix:Selecting flowering plants to meet the requirements of target biological control insects[M]//Gurr G M, Wratten, S D, Snyder W E, eds. Biodiversity and Insect Pests:Key Issues for Sustainable Management, John Wiley & Sons, Ltd, 2012, 139-165. [26] Benelli G, Giunti G, Tena A, et al. The impact of adult diet on parasitoid reproductive performance[J]. Journal of Pest Science, 2017, 90:807-823. [27] Heimpel G E, Jervis M A. Does floral nectar improve biological control by parasitoids[M]//Wäckers F L, Van Rijn P C J, Bruin J, eds. Plant-Provided Food for Carnivorous Insects:A Protective Mutualism and Its Applications. Cambridge:Cambridge University Press, 2005, 267-304. [28] Arnó J, Oveja M F, Gabarra R. Selection of flowering plants to enhance the biological control of Tuta absoluta using parasitoids[J]. Biological Control, 2018, 122:41-50. [29] Barloggio G, Tamm L, Nagel P, et al. Selective flowers to attract and enhance Telenomus laeviceps (Hymenoptera:Scelionidae):A released biocontrol agent of Mamestra brassicae (Lepidoptera:Noctuidae)[J]. Bulletin of Entomological Research, 2019, 109:160-168. [30] Buchanan A, Grieshop M, Szendrei Z. Assessing annual and perennial flowering plants for biological control in asparagus[J]. Biological Control, 2018, 127:1-8. [31] Cahenzli F, Sigsgaard L, Daniel C, et al. Perennial flower strips for pest control in organic apple orchards-A pan-European study[J]. Agriculture, Ecosystems & Environment, 2019, 278:43-53. [32] Hatt S, Mouchon P, Lopes T, et al. Effects of wildflower strips and an adjacent forest on aphids and their natural enemies in a pea field[J]. Insects, 2017, 8:e0178648. [33] Hodgkiss D, Brown M J F, Fountain M T. The effect of within-crop floral resources on pollination, aphid control and fruit quality in commercial strawberry[J]. Agriculture, Ecosystems & Environment, 2019, 275:112-122. [34] Jado R H, Araj S E, Abu-Irmaileh B, et al. Floral resources to enhance the potential of the parasitoid Aphidius colemani for biological control of the aphid Myzus persicae[J]. Journal of Applied Entomology, 2019, 143:34-42. [35] Picciau L, Alma A, Ferracini C. Effect of different feeding sources on lifespan and fecundity in the biocontrol agent Torymus sinensis[J]. Biological Control, 2019, 134:45-52. [36] Munir S, Dosdall L M, Keddie A. Selective effects of floral food sources and honey on life-history traits of a pest-parasitoid system[J]. Entomologia Experimentalis et Applicata, 2018, 166:500-507. [37] Díaz S, Lavorel S, De Bello F, et al. Incorporating plant functional diversity effects in ecosystem service assessments[J]. Proceedings of the National Academy of Sciences, 2007,104:20684-20689. [38] Kunstler G, Falster D, Coomes D A, et al. Plant functional traits have globally consistent effects on competition[J]. Nature, 2016, 529:204-207. [39] Lavi R, Sapir Y. Are pollinators the agents of selection for the extreme large size and dark color in Oncocyclus irises[J]. New Phytologist, 2015, 205:369-377. [40] Menzel R, Shmida A. The ecology of flower colours and the natural colour vision of insect pollinators:the Israeli flora as a study case[J]. Biological Reviews, 2010, 68:81-120. [41] Perović D J, Landis D A, Wäckers F, et al. Managing biological control services through multi-trophic trait interactions:review and guidelines for implementation at local and landscape scales[J]. Biological Reviews, 2018, 93:306-321. [42] Fataar S, Kahmen A, Luka H. Innate and learned olfactory attraction to flowering plants by the parasitoid Cotesia rubecula (Marshall, 1885) (Hymenoptera:Braconidae):Potential impacts on conservation biological control[J]. Biological Control, 2019, 132:16-22. [43] Foti M C, Rostás M, Peri E, et al. Chemical ecology meets conservation biological control:identifying plant volatiles as predictors of floral resource suitability for an egg parasitoid of stink bugs[J]. Journal of Pest Science, 2017, 90:299-310. [44] Irwin R E, Cook D, Richardson L L, et al. Secondary compounds in floral rewards of toxic rangeland plants:impacts on pollinators[J]. Journal of Agricultural and Food Chemistry, 2014, 62:7335-7344. [45] Kehrli P, Bacher S. Differential effects of flower feeding in an insect host-parasitoid system[J]. Basic and Applied Ecology, 2008, 9:709-717. [46] Wäckers F L, Romeis J, van Rijn P C J. Nectar and pollen feeding by insect herbivores and implications for multitrophic interactions[J]. Annual Review of Entomology, 2007, 52:301-323. [47] Goelen T, Baets D, Kos M, et al. Gustatory response and longevity in Aphidius parasitoids and their hyperparasitoid Dendrocerus aphidum[J]. Journal of Pest Science, 2018, 91:351-360. [48] Jonsson M, Wratten S D, Robinson K A, et al. The impact of floral resources and omnivory on a four trophic level food web[J]. Bulletin of Entomological Research, 2009, 99:275-285. [49] Miall J H, Abram P K, Cappuccino N, et al. Effects of floral resources on the efficacy of a primary parasitoid and a facultative hyperparasitoid[J]. Journal of Applied Entomology, 2019, 143(7):776-786. |