[1] 兰成忠, 甘林, 代玉立, 等. 黄瓜枯萎病菌拮抗菌的筛选、鉴定和防效测定[J]. 中国生物防治学报, 2023, 39(1): 184-193. [2] 熊玉婷, 郑璐瑶, 贾雯淇, 等. 黄瓜枯萎病的拮抗放线菌菌株的分离与鉴定[J]. 作物杂志, 2023(6): 261-269. [3] 张扬, 魏岚菁, 陈军宏, 等. 生防放线菌ZZ-9颗粒剂的研制及对黄瓜立枯病的防治效果[J]. 中国生物防治学报, 2023, 39(5): 1194-1203. [4] 隋继超, 李晓丽, 宋晓飞, 等. 黄瓜抗枯萎病研究进展[J]. 中国瓜菜, 2023, 36(01): 1-5. [5] 褚睿, 李昭轩, 张学青, 等. 黄瓜枯萎病拮抗芽胞杆菌的筛选、鉴定及其生防潜力[J]. 生物技术通报, 2023, 39(8): 262-271. [6] Daud N S, Mohd Din A R J, Rosli M A, et al. Paenibacillus polymyxa bioactive compounds for agricultural and biotechnological applications[J]. Biocatalysis and Agricultural Biotechnology, 2019, 18: 1-7. [7] 张博阳, 朱天辉, 韩珊, 等. 桑氏链霉菌KJ40全基因组测序及分析[J]. 微生物学通报, 2018, 45(4): 805-818. [8] 田娜娜, 郭子璇, 王璐, 等. 抗菌肽等抑菌物质抗菌活性检测方法比较研究[J]. 中国乳品工业, 2018, 46(4): 52-56. [9] 孙亮, 刘文波, 杨廷雅, 等. 枯草芽胞杆菌HAB-1产生抗菌物质的最优发酵条件[J]. 热带生物学报, 2013, 4(03): 225-231, 235. [10] Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes implications for finding sequence motifs in regulatory regions[J]. Nucleic Acids Research, 2001, 29(12): 2607-2618. [11] Buchfink B, Xie C, Huson D H. Fast and sensitive protein alignment using diamond[J]. Nature Methods, 2015, 12(1): 59-60. [12] Conesa A, Götz S. Blast2GO: a comprehensive suite for functional analysis in plant genomics[J]. International Journal of Plant Genomics, 2008, 2008: 1-12. [13] Grissa I, Vergnaud G, Pourcel C. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats[J]. Nucleic Acids Research, 2007, 35: 52-57. [14] Lowe T M, Eddy S R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence[J]. Nucleic Acids Research, 1997, 25(5): 955-964. [15] Kalvari I, Argasinska J, Quinones-Olvera N, et al. Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families[J]. Nucleic Acids Research, 2018, 46(1): 335-342. [16] Akhter S, Aziz R K, Edwards R A. PhiSpy: a novel algorithm for finding prophages in bacterial genomes that combines similarity- and composition-based strategies[J]. Nucleic Acids Research, 2012, 40(16): e126. [17] Bertelli C, Laird M R, Williams K P, et al. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets[J]. Nucleic Acids Research, 2017, 45(W1): W30-W35. [18] Krzywinski M, Schein J, Birol I, et al. Circos: an information aesthetic for comparative genomics[J]. Genome Research, 2009, 19(9): 1639-1645. [19] Niu B, Rueckert C, Blom J, et al. The genome of the plant growth-promoting rhizobacterium Paenibaeillus polymyxa M-1 contains nine sites dedicated to nonribosomal synthesis of lipopeptides and polyketides[J]. Journal of bacteriology, 2011, 193(20): 5862-5863. [20] Eastman A W, Weselowski B, Nathoo N, et al. Complete genome sequence of Paenibacillus polymyxa CR1, a plant growth-promoting bacterium isolated from the corn rhizosphere exhibiting potential for biocontrol, biomass degradation, and biofuelp production[J]. Genome Announcements, 2014, 2(1): 1-2. [21] 范磊, 张道敬, 刘振华, 等. 多粘类芽孢杆菌HY96-2产脂肽类抗真菌物质的研究[J]. 天然产物研究与开发, 2012, 24: 729-735. [22] 陈俊毅, 温华强, 梁均钿, 等. 全基因组预测多粘类芽胞杆菌SC2的分泌蛋白[J]. 基因组学与应用生物学, 2019, 38(12): 5436-5443. [23] E Y, Yuan J, Yang F, Wang L, et al. PGPR strain Paenibacillus polymyxa SQR-21 potentially benefits watermelon growth by re-shaping root protein expression[J]. AMB Express, 2017, 7: 104. [24] Darling A C, Mau B, Blattner F R, et al. Mauve: multiple alignment of conserved genomic sequence with rearrangements[J]. Genome Research, 2004, 14(7): 1394-1403. [25] Medema M H, Blin K, Cimermancic P, et al. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences[J]. Nucleic Acids Research, 2011, 39: 339-346. [26] Luo Y, Cheng Y, Yi J, et al. Complete genome sequence of industrial biocontrol strain Paenibacillus polymyxa HY96-2 and further analysis of its biocontrol mechanism[J]. Front Microbiology, 2018, 9: 1520. [27] Rajesh T, Anthony T, Saranya S, et al. Functional characterization of a new holin-like antibacterial protein coding gene tmp1 from goat skin surface metagenome[J]. Applied Microbiology and Biotechnology, 2011, 89(4): 1061-1073. [28] Merino E, Babitzke P, Yanofsky C. trp RNA-binding attenuation protein (TRAP)-trp leader RNA interactions mediate translational as well as transcriptional regulation of the Bacillus subtilis trp operon[J]. Bacteriology, 1995, 177(22): 6362-6370. [29] Li E, Liu K, Yang S, et al. Analysis of the complete genome sequence of Paenibacillus sp. lzh-N1 reveals its antagonistic ability[J]. BMC Genomics, 2024, 25(1): 276. [30] Choi S K, Park S Y, Kim R, et al. Identification and functional analysis of the fusaricidin biosynthetic gene of Paenibacillus polymyxa E681[J]. Biochemical and Biophysical Research Communications, 2008, 365(1): 89-95. [31] Huang E, Yousef A E. Biosynthesis of paenibacillin, a lantibiotic with N-terminal acetylation, by Paenibacillus polymyxa[J]. Microbiological Research, 2015, 181: 15-21. [32] Lohans C T, Huang Z, van Belkum M J, et al. Structural characterization of the highly cyclized lantibiotic paenicidin A via a partial desulfurization/reduction strategy[J]. American Chemical Society, 2012, 134(48): 19540-3. [33] Jangra M, Kaur M, Tambat R, et al. Tridecaptin M, a new variant discovered in mud bacterium, shows activity against colistin- and extremely drug-resistant enterobacteriaceae[J]. Antimicrob Agents Chemother, 2019, 63(6): e00338-19 [34] Teta R, Marteinsson V T, Longeon A, et al. Thermoactinoamide A, an antibiotic lipophilic cyclopeptide from the icelandic thermophilic bacterium Thermoactinomyces vulgaris[J]. Natural Products, 2017, 80(9): 2530-2535. [35] Silva K E D, Rossato L, Leite A F, et al. Overview of polymyxin resistance in enterobacteriaceae[J]. Revista da Sociedade Brasileira de Medicina Tropical, 2022, 55: e0349. [36] 陆鑫, 由屹先, 吕晓菊. 多黏菌素类抗生素治疗碳青霉烯类耐药菌所致重症感染临床研究进展[J]. 中国感染与化疗杂志, 2024, 24(2): 224-230. [37] Wang D, Mao H, Zhao Z, et al. Reprogramming of the aurantinin polyketide assembly line to synthesize auritriacids by excising an atypical enoyl-CoA hydratase domain[J]. Advanced Science(Weinh), 2024, 11(35): e2401708. [38] Vater J, Herfort S, Doellinger J, et al. Genome mining of the lipopeptide biosynthesis of Paenibacillus polymyxa E681 in combination with mass spectrometry: Discovery of the lipoheptapeptide paenilipoheptin[J]. Chembiochem. 2018, 19(7): 744-753. |