[1] De Serrano L O, Camper A K, Richards A M. An overview of siderophores for iron acquisition in microorganisms living in the extreme[J]. BioMetals, 2016, 29(4):551-571. [2] Braun V, Killmann H. Bacterial solutions to the iron-supply problem[J]. Trends in Biochemical Sciences, 1999, 24(3):104-109. [3] Boukhalfa H, Crumbliss A L. Chemical aspects of siderophore mediated iron transport[J]. BioMetals, 2002, 15(4):325-339. [4] Dimopoulou A, Theologidis L, Benaki D, et al. Direct antibiotic activity of Bacillibactin broadens the biocontrol range of Bacillus amyloliquefaciens MBI600[J]. mSphere, 2021, 6(4):e00376-21. [5] Wilson M K, Abergel R J, Raymond K N, et al. Siderophores of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis[J]. Biochemical and Biophysical Research Communications, 2006, 348(1):320-325. [6] Hotta K, Kim C Y, Fox D T, et al. Siderophore-mediated iron acquisition in Bacillus anthracis and related strains[J]. Microbiology, 2010, 156(7):1918-1925. [7] May J J, Wendrich T M, Marahiel M A. The dhb operon of Bacillus subtilis encodes the biosynthetic template for the catecholic siderophore 2,3-dihydroxybenzoate-glycine-threonine trimeric ester Bacillibactin[J]. The Journal of Biological Chemistry, 2001, 276(10):7209-7217. [8] 沈佳慧, 左杨, 乔俊卿, 等. 贝莱斯芽胞杆菌Bacillus velezensis YL2021嗜铁素合成基因dhbC的功能研究[J]. 中国生物防治学报, 2022, 38(3):602-612. [9] 方传记, 陆兆新, 孙力军, 等. 淀粉液化芽孢杆菌抗菌脂肽发酵培养基及发酵条件的优化[J]. 中国农业科学, 2008, 41(2):533-539. [10] Bharucha U D, Patel K C, Trivedi U B. Antifungal activity of catecholate type siderophore produced by Bacillus sp.[J]. International Journal of Pharmaceutical Sciences and Research, 2013, 4:528-531. [11] Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning:A Laboratory Manual. 2nd ed[M]. New York:Cold Spring Harbor Laboratory Press, 1989. [12] Scher M, Baker R. Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens[J]. Ecology and Epidemiology, 1982, 72(12):1567-1573. [13] 孙萌. 铁载体高产菌株的ARTP选育及其铁载体产量提高机理的初步分析[D]. 无锡:江南大学, 2017. [14] Arnow L E. Colorimetric determination of the components of 3,4-dihydroxphenylalaninetyrosine mixtures[J]. Journal of Biological Chemistry, 1937, 118(2):531-537. [15] Lockwood J A. Agriculture and biodiversity:finding our place in this world[J]. Agriculture and Human Values, 1999, 16:365-379. [16] Averianova L A, Balabanova L A, Son O M, et al. Production of vitamin B2 (riboflavin) by microorganisms:an overview[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8:e570828. [17] 梁建根, 施跃峰, 竺利红, 等. 恶臭假单胞菌株HZ-2产嗜铁素的发酵条件研究[J]. 浙江农业学报, 2008, 20(4):266-269. [18] 伊艳杰, 周广舟, 时玉, 等. 荧光假单胞菌RB5产嗜铁素的发酵条件[J]. 河南工业大学学报(自然科学版), 2011, 32(6):32-35, 39. [19] 余贤美, 周广芳, 辛力. 枯草芽胞杆菌Bs-15产嗜铁素条件及其对甜椒的防病促生效应[J]. 农药学学报, 2010, 12(2):135-141. [20] Pi H, Helmann J D. Sequential induction of Fur-regulated genes in response to iron limitation in Bacillus subtilis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(48):12785-12790. [21] 于欣冉, 李颖杰, 陈冠军, 等. 铁摄取调节蛋白Fur功能和作用模式的研究进展[J]. 生物化学与生物物理进展, 2021, 48(6):618-636. [22] 马玥, 宋楠楠, 李冰清. 细菌铁摄取调节蛋白Fur的研究进展[J]. 中国病原生物学杂志, 2021,16(1):117-121, 126. [23] 赵继红, 李建中. 农用微生物杀菌剂研究进展[J]. 农药, 2003, 42(5):7-8. [24] 丁学知, 夏立秋. 苏云金杆菌高毒力菌株4.0718的快速选育[J]. 中国生物防治, 2001, 17(4):163-166. [25] 陈志谊, 高太东, 严大富, 等. 枯草芽孢杆菌B-916防治水稻纹枯病的田间试验[J]. 中国生物防治, 1997, 13(2):29-32. [26] 张乐怡, 刘宇, 陈平强, 等. 几种生物农药对青海蚕豆主要病虫害的防治效果[J]. 中国生物防治学报, 2022, 38(6):1377-1384. [27] 周蒙. 中国生物农药发展的现实挑战与对策分析[J]. 中国生物防治学报, 2021, 37(1):184-192. [28] 邱德文. 生物农药的发展现状与趋势分析[J]. 中国生物防治学报, 2015, 31(5):679-684. [29] 曾智, 孙运军, 钱荣华, 等. 我国微生物农药的研究应用现状与前景[J]. 农业现代化研究, 2008, 29(2):254-256. |