[1] 中华人民共和国中央人民政府. 普查显示我国中药资源达1. 8万余种[EB/OL]. 中国政府网, 2024-02-24[2024-8-20]. https: //www. gov. cn/yaowen/ liebiao/202402/content_6933882. htm. [2] 梁威. 2020年版《中国药典》 (一部)根及根茎类中药基原及药用部位统计分析[J]. 亚太传统医药, 2022, 18(8): 168-172. [3] 国家林业和草原局办公室. 国家林业和草原局办公室关于印发《林草中药材产业发展指南》的通知[EB/OL]. 国家林业和草原局, 2022-02-24[2024-7-25]. https://www.forestry.gov.cn/c/www/gkzfwj/270489.jhtml. [4] 廖长宏, 陈军文, 吕婉婉, 等. 根和根茎类药用植物根腐病研究进展[J]. 中药材, 2017, 40(2): 492-497. [5] 高芬, 任小霞, 王梦亮, 等. 中草药根腐病及其微生物防治研究进展[J]. 中国中药杂志, 2015, 40(21): 4122-4126. [6] 陈宏宇, 毛正云. 黄芪根腐病发病因素调查初报[J]. 农业科技与信息, 2014(21): 13-14. [7] 冯光泉, 陈昱君, 王勇, 等. 三七主要病害防治技术标准操作规程(草案)[J]. 现代中药研究与实践, 2003, 17(S): 47-48. [8] 张佳宁, 谢田朋, 杨林桦, 等. 药用植物根腐病研究进展[J]. 中国野生植物资源, 2024, 43(6): 60-67. [9] Weibing X, Yi R, He Y, et al. Sustained inhibition of maize seed-borne Fusarium using a Bacillus-dominated rhizospheric stable core microbiota with unique cooperative patterns[J]. Advanced Science, 2023, 10(5): 2205215. [10] Li Z, Bai X, Jiao S, et al. A simplified synthetic community rescues Astragalus mongholicus from root rot disease by activating plant-induced systemic resistance[J]. Microbiome, 2021, 9(1): 217. [11] 赵振忠, 温凤英, 国占忠. 甜菜根腐病发生原因与防治技术[J]. 中国糖料, 2000(1): 58-59. [12] 沈清清, 刘芳, 胡彦. 药用植物根腐病病原菌研究进展[J]. 北方园艺, 2014(11): 187-190. [13] 李阔, 王红阳, 郭秀芝, 等. 木霉属真菌诱导根及根茎类中药材抗根腐病的研究及应用进展[J]. 中国中药杂志, 2023, 48(18): 4942-4949. [14] 张金丽. 三七根腐病及生物防治研究进展[J]. 农村经济与科技, 2022, 33(2): 50-52. [15] 李超楠, 李洪涛, 李运朝, 等. 苍术根腐病及其防治研究进展[J]. 农业环境科学学报, 2022, 41(12): 2840-2846. [16] 唐彬彬, 董姚君, 贺密密, 等. 云南文山健康三七种植年限对根际微生物群落的影响[J]. 微生物学通报, 2020, 47(9): 2857-2866. [17] 赵静, 张晓东, 王连春, 等. 三七重茬根际土壤中化感物质的测定及其对三七根腐菌的生长作用[J]. 中国微生态学杂志, 2018, 30(2): 146-149, 154. [18] Xu Y, Yang M, Yin R, et al. Autotoxin Rg1 induces degradation of root cell walls and aggravates root rot by modifying the rhizospheric microbiome[J]. Microbiology Spectrum, 2021, 9(3): e0167921. [19] 李军, 李白, 高广春. 药用植物内生菌抑菌作用研究进展[J]. 浙江农业科学, 2017, 58(11): 1989-1992, 1996. [20] Jinal N H, Amaresan N. Evaluation of biocontrol Bacillus species on plant growth promotion and systemic-induced resistant potential against bacterial and fungal wilt-causing pathogens[J]. Archives of Microbiology, 2020, 202(7): 1785-1794. [21] 叶晶晶, 曹宁宁, 吴建梅, 等. 生防芽孢杆菌的应用研究进展[J]. 西北农林科技大学学报: 自然科学版, 2014, 42(8): 185. [22] 杨芝霓, 鲁萌萌, 黄穗萍, 等. 产挥发性物质芽孢杆菌对芒果炭疽菌的抑制作用及对芒果炭疽病的防病效果[J]. 植物病理学报, 2023, 53(6): 1180-1191. [23] de O. Nunes P S, De Medeiros F H V, De Oliveira T S, et al. Bacillus subtilis and Bacillus licheniformis promote tomato growth[J]. Brazilian Journal of Microbiology, 2023, 54(1): 397-406. [24] 陈华, 郑之明, 余增亮. 枯草芽孢杆菌JA脂肽类及挥发性物质抑菌效应的研究[J]. 微生物学通报, 2008, 35(1): 1-4. [25] Zhang Z, Zhang W, Wang X, et al. Isolation and identification of antagonistic bacteria of Angelica root rot and their mechanism as biological control[J]. Biological Control, 2023, 177: 105120. [26] 牛世全, 孙铭悦, 马凯丽, 等. 一株当归根腐病拮抗菌株的筛选、鉴定及培养条件优化[J]. 西北师范大学学报(自然科学版), 2023, 59(2): 109-117+127. [27] 常征, 王蓉, 李洪潮, 等. 菌株YS(r)-19分离鉴定及对三七根腐病菌的抑菌活性[J]. 江苏农业科学, 2017, 45(6): 92-95. [28] Nawaz S, Bano A. Effects of PGPR (Pseudomonas sp.) and Ag-nanoparticles on enzymatic activity and physiology of cucumber[J]. Recent Patents on Food, Nutrition & Agriculture, 2020, 11(2): 124-136. [29] 刘海娇, 苏应威, 方岚, 等. 茴香轮作调控土壤细菌群落缓解三七连作障碍的效应及机制[J]. 中国生物防治学报, 2021, 37(1): 139-149. [30] 沈永昶, 曹贝贝, 胡淼, 等. 三七根腐病原菌拮抗菌的筛选与活性分析[J]. 浙江理工大学学报(自然科学版), 2019, 41(6): 806-811. [31] 游景茂, 熊坤, 穆森, 等. 内生细菌BZJN1的鉴定及对白术根腐病的生物防治研究[J]. 中国中药杂志, 2018, 43(3): 478-483. [32] 李忠, 张翊, 吴小毛, 等. 植物土传病害生防细菌的筛选、鉴定及特性研究[J]. 河南农业科学, 2013, 42(4): 103-106. [33] 高琳娜, 曹克强, 段英姿, 等. 拮抗细菌Bs-0728对板蓝根根腐病的防治作用[J]. 植物保护, 2011, 37(5): 97-100. [34] 李红梅. 板蓝根根腐病生防因子的筛选与研究[D]. 河北: 河北农业大学, 2009. [35] 谢晓宝. 人参锈腐病和根腐病拮抗细菌SX-23的鉴定、发酵条件优化及可湿性粉剂研制[D]. 吉林: 吉林农业大学, 2022. [36] 勾长龙, 王雨琼, 孙朋, 等. 人参根腐病拮抗菌的筛选、鉴定及其抑菌活性[J]. 食品科学, 2015, 36(19): 143-147. [37] 廖海浪, 钟芙蓉, 柯汶佳, 等. 黄连根腐病病原菌的分离鉴定及其拮抗菌筛选[J]. 中国抗生素杂志, 2022, 47(9): 900-912. [38] 高芬, 赵晓霞, 闫欢, 等. 黄芪根腐病拮抗芽孢杆菌的筛选鉴定及其对根围细菌群落的影响[J]. 中国中药杂志, 2019, 44(18): 3942-3947. [39] 许磊磊, 白晓丽, 李哲斐. 黄芪根腐病拮抗菌的筛选及生防机制[J]. 西北师范大学学报(自然科学版), 2024, 60(2): 77-85. [40] 周莹, 袁孟娟, 韩军, 等. 中药材丹参根腐病生防菌的分离与鉴定[J]. 北方园艺, 2015(1): 145-147. [41] 许乐, 王子强, 张爽, 等. 丹参根腐病拮抗细菌筛选、鉴定及生防机理研究[J]. 中国生物防治学报, 2021, 37(4): 846-854. [42] 杨合同. 木霉分类与鉴定=Classification and Identification of Trichoderma[M]. 北京: 中国大地出版社, 2009. [43] 阮盈盈, 刘峰. 木霉菌生物防治作用机制与应用研究进展[J]. 浙江农业科学, 2020, 61(11): 2290-2294. [44] 李琼芳, 曾华兰, 叶鹏盛, 等. 麦冬、丹参、川芎根腐病的发生及生物防治研究[J]. 西南农业学报, 2007, 20(6): 1310-1312. [45] 关一鸣, 潘晓曦, 王莹, 等. 哈茨木霉菌、枯草芽孢杆菌对人参灰霉病和根腐病病原菌的拮抗作用[J]. 江苏农业科学, 2014(5): 123-125. [46] Li K, Lin H, Guo X, et al. Allochthonous Trichoderma isolates boost Atractylodes lancea herb quality at the cost of rhizome growth[J]. Journal of Fungi, 2024, 10(5): 351. [47] Ge A H, Liang Z H, Xiao J L, et al. Microbial assembly and association network in watermelon rhizosphere after soil fumigation for Fusarium wilt control[J]. Agriculture, Ecosystems & Environment, 2021, 312: 107336. [48] 李丽群, 郑培芳, 陶小雪, 等. 川芎苓种内生燕麦镰刀菌拮抗川芎根腐病的研究[J]. 中药与临床, 2024, 15(2): 28-32. [49] 程单单, 刘玉军, 丁文娜, 等. 拮抗多花黄精根腐病的内生真菌鉴定及发酵条件研究[J]. 安徽农业大学学报, 2024(5): 740-748. [50] 罗琳, 周泠璇, 刘娅. 毕赤酵母G5拮抗葡萄灰霉病机理初探[J]. 生物技术通报, 2017, 33(9): 210-215. [51] Su Y, Yang W, Wang R, et al. ZnO-S. cerevisiae: An effective growth promoter of Astragalus memeranaceus and nano-antifungal agent against Fusarium oxysporum[J]. Chemical Engineering Journal, 2024, 486: 149958. [52] 曾志海, 赵晋, 朱广啟, 等. 木霉菌对黄芩根腐病病原菌抑制作用初探[J]. 陕西农业科学, 2018, 64(3): 33-34. [53] 曾华兰, 叶鹏盛, 何炼, 等. 木霉菌防治川芎根腐病的初步研究[J]. 西南农业学报, 2005, 18(4): 427-430. [54] 胡容平, 龚国淑, 叶慧丽, 等. 川芎根腐病防治初步研究[J]. 西南农业学报, 2013, 26(5): 1873-1877. [55] 张晶晶, 张宁, 侯微, 等. 一株人参内生真菌的鉴定及对人参根腐病的防效[J]. 东北农业科学, 2024, 49(1): 80-84. [56] 韩忠明, 孙卓, 王妍, 等. 防风根腐病拮抗真菌的筛选鉴定及生防作用研究[J]. 中国生物防治学报, 2022, 38(5): 1288-1295. [57] Huang X G, Li M Y, Yan X N, et al. The potential of Trichoderma brevicompactum for controlling the root rot on Atractylodes macrocephala[J]. Canadian Journal of Plant Pathology, 2021, 43(6): 794-802. [58] Vurukonda S S K P, Giovanardi D, Stefani E. Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes[J]. International Journal of Molecular Sciences, 2018, 19(4): 952. [59] 张铭鑫, 彭娜, 王尧尧, 等. 西洋参根腐病拮抗菌XT-25的生防作用研究[J]. 核农学报, 2024, 38(7): 1249-1257. [60] 蒋靖怡, 杜用玺, 孙楷, 等. 丹参根际放线菌Acti-001的生防潜力评估及其鉴定[J]. 中国植保导刊, 2022, 42(12): 5-9. [61] 张金丽, 苗翠苹. 三七内生放线菌的分离及拮抗三七根腐病原活性研究[J]. 微生物学杂志, 2023, 43(1): 85-91. [62] Hutchings M I, Truman A W, Wilkinson B. Antibiotics: past, present and future[J]. Current Opinion in Microbiology, 2019, 51: 72-80. [63] 姜培增, 焦怀德, 田利, 等. 生物农药的一颗新星——菌克毒克[C]//第三届全国绿色环保农药新技术、新产品交流会暨第二届全国生物农药研讨会论文集[C]. 武汉: 中国腐植酸工业协会, 2004, 414-417. [64] 陈燕玲, 柏亚罗. 2023年首次登记或上市的6 个农药新品种[J]. 世界农药, 2024, 46(7): 1-11. [65] 杜用玺, 蒋靖怡, 王铁霖, 等. 拮抗丹参根腐病病原菌的丹参根际放线菌筛选研究[J]. 中国植保导刊, 2020, 40(9): 17-22. [66] 张雪莹. 当归根腐病病原菌的分离及拮抗菌抑菌机理初探[D]. 甘肃: 西北师范大学, 2021. [67] Goers L, Freemont P, Polizzi K M. Co-culture systems and technologies: taking synthetic biology to the next level[J]. Journal of the Royal Society Interface, 2014, 11(96): 1058-1069. [68] 韦中, 杨天杰, 任鹏, 等. 合成菌群在根际免疫研究中的现状与未来[J]. 南京农业大学学报, 2021, 44(4): 597-603. [69] Zhou X, Wang J, Liu F, et al. Cross-kingdom synthetic microbiota supports tomato suppression of Fusarium wilt disease[J]. Nature Communications, 2022, 13(1): 7890. [70] Qiao Y, Wang Z, Sun H, et al. Synthetic community derived from grafted watermelon rhizosphere provides protection for ungrafted watermelon against Fusarium oxysporum via microbial synergistic effects[J]. Microbiome, 2024, 12(1): 101. [71] 周芳芳, 李晓婷, 汤利. 合成菌群促生抗逆功能的研究进展[J]. 土壤, 2023, 55(6): 1170-1175. [72] Mallon C A, Van Elsas J D, Salles J F. Microbial Invasions: The process, patterns, and mechanisms[J]. Trends in Microbiology, 2015, 23(11): 719-729. [73] Wei Z, Yang T, Friman V P, et al. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health[J]. Nature Communications, 2015, 6(1): 8413. [74] Segarra G, Casanova E, Avilés M, et al. Trichoderma asperellum strain T34 controls Fusarium wilt disease in tomato plants in soilless culture through competition for iron[J]. Microbial Ecology, 2010, 59(1): 141-149. [75] 左静, 廖晓兰. 应用假单胞菌防治植物真菌性病害研究进展[J]. 现代农业科技, 2011, (22): 164-165, 167. [76] Lazzeri L, Baruzzi G, Malaguti L, et al. Replacing methyl bromide in annual strawberry production with glucosinolate-containing green manure crops[J]. Pest Management Science, 2003, 59(9): 983-990. [77] 魏蕾. 根际微生物防治土传病害研究进展[J]. 蔬菜, 2022(11): 32-39. [78] Singh S K, Pathak R, Choudhary V. Plant growth-promoting rhizobacteria-mediated acquired systemic resistance in plants against pests and diseases[J]. Microbial-mediated Induced Systemic Resistance in Plants, 2016: 125–134. [79] 何宇, 吕卫光, 张娟琴, 等. 生防菌对稻瘟病害控制的研究进展[J]. 江苏农业科学, 2021, 49(21): 40-46. [80] Liu D, Yan R, Fu Y, et al. Antifungal, plant growth-promoting, and genomic properties of an endophytic actinobacterium Streptomyces sp. NEAU-S7GS2[J]. Frontiers in Microbiology, 2019, 10: 2077. [81] Cha J Y, Han S, Hong H J, et al. Microbial and biochemical basis of a Fusarium wilt-suppressive soil[J]. The ISME Journal, 2016, 10(1): 119-129. [82] Kavitha S, Senthilkumar S, Gnanamanickam S, et al. Isolation and partial characterization of antifungal protein from Bacillus polymyxa strain VLB16[J]. Process Biochemistry, 2005, 40(10): 3236-3243. [83] 李玉龙. 生防菌对两种作物病害的防治作用及机理[D]. 杨凌: 西北农林科技大学, 2019. [84] 王文军, 田昊, 孟阔, 等. 食用菌采后侵染性病害生物防治研究进展[J]. 食品与发酵工业, 2024, 50(11): 353-359. [85] Dimkić I, Janakiev T, Petrović M, et al. Plant-associated Bacillus and Pseudomonas antimicrobial activities in plant disease suppression via biological control mechanisms - A review[J]. Physiological and Molecular Plant Pathology, 2022, 117: 101754. [86] 孔庆科, 丁爱云, 刘招舰, 等. 根际细菌诱导的系统抗性[J]. 山东科学, 2001, 14(4): 18-25. [87] Abbas T, Zahir Z A, Naveed M, et al. Limitations of existing weed control practices necessitate development of alternative techniques based on biological approaches[J]. Advances in Agronomy, 2018, 147: 239-280. [88] Pieterse C M J, Zamioudis C, Berendsen R L, et al. Induced systemic resistance by beneficial microbes[J]. Annual Review of Phytopathology, 2014, 52(1): 347-375. [89] Murphy J F, Zehnder G W, Schuster D J, et al. Plant growth-promoting rhizobacterial mediated protection in tomato against tomato mottle virus[J]. Plant Disease, 2000, 84(7): 779-784. [90] 陈忠男, 王志刚, 徐伟慧. 生防菌在农业中的应用及其机制研究进展[J]. 高师理科学刊, 2022, 42(6): 89-94, 110. [91] 尚宪超. 防治烟草青枯病的根际核心微生物筛选鉴定与抗病机制[D]. 北京: 中国农业科学院, 2022. [92] Ballhausen M B, Vandamme P, De Boer W. Trait differentiation within the fungus-feeding (mycophagous) bacterial genus Collimonas[J]. PLoS ONE, 2016, 11(6): e0157552. |