[1] Pimentel D. Amounts of pesticides reaching target pests: Environmental impacts and ethics[J]. Journal of Agricultural and Environmental Ethics, 1995, 8(1): 17-29. [2] Sentis A, Hemptinne J L, Magro A, et al.Biological control needs evolutionary perspectives of ecological interactions[J]. Evolutionary Applications, 2022, 15(10): 1537-1554. [3] Moore S D. Biological control of a phytosanitary pest (Thaumatotibia leucotreta): A case study[J]. International Journal of Environmental Research and Public Health, 2021, 18(3): 1198. [4] Naranjo S E, Ellsworth P C, Frisvold G B. Economic value of biological control in integrated pest management of managed plant systems[J]. Annual Review of Entomology, 2015, 60: 621-645. [5] Yang Y, Jiang Q, Peng M, et al. A star polyamine-based nanocarrier delivery system for enhanced avermectin contact and stomach toxicity against green peach aphids[J]. Nanomaterials, 2022, 12(9): 1445. [6] Dong M, Chen D, Che L, et al. Biotoxicity evaluation of a cationic star polymer on a predatory ladybird and cooperative pest control by polymer-delivered Pesticides and ladybird[J]. ACS Applied Materials & Interfaces, 2022, 14(4): 6083-6092. [7] Yan S, Hu Q, Li J, et al. A star polycation acts as a drug nanocarrier to improve the toxicity and persistence of botanical pesticides[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(20): 17406-17413. [8] Ma Z, Zhang Y, Li M, et al. A first greenhouse application of bacteria-expressed and nanocarrier-delivered RNA pesticide for Myzus persicae control[J]. Journal of Pest Science, 2023, 96(1): 181-193. [9] Wang X, Zheng K, Cheng W, et al. Field application of star polymer-delivered chitosan to amplify plant defense against potato late blight[J]. Chemical Engineering Journal, 2021, 417: 129327. [10] Zhu K Y, Palli S R. Mechanisms, applications, and challenges of insect RNA interference[J]. Annual Review of Entomology, 2020, 65: 293-311. [11] Lin F, Mao Y, Zhao F, et al. Towards sustainable green adjuvants for microbial pesticides: Recent progress, upcoming challenges, and future perspectives[J]. Microorganisms, 2023, 11(2): 364. [12] Zhu F, Cao M Y, Zhang Q P, et al. Join the green team: Inducers of plant immunity in the plant disease sustainable control toolbox[J]. Journal of Advanced Research, 2024, 57: 15-42. [13] Wang X, Lv J li, Cheng S, et al. Bombyx mori transcription factor, E74A, beneficially affects BmNPV infection through direct interaction[J]. Pest Management Science, 2022, 78(12): 5302-5312. [14] Gan-Mor S, Matthews G A. Recent developments in sprayers for application of biopesticides—an overview[J]. Biosystems Engineering, 2003, 84(2): 119-125. [15] Hezakiel H E, Thampi M, Rebello S, et al. Biopesticides: A green approach towards agricultural pests[J]. Applied Biochemistry and Biotechnology, 2024, 196(8): 5533-5562. [16] Ren T, Mi Y, Wei J, et al. Advances in nano-functional materials in targeted thrombolytic drug delivery[J]. Molecules, 2024, 29(10): 2325. [17] Cheng Z, Li M, Dey R, et al. Nanomaterials for cancer therapy: Current progress and perspectives[J]. Journal of Hematology & Oncology, 2021, 14(1): 85. [18] Li K, Liu Y, Lou B, et al. DNA-guided metallization of nanomaterials and their biomedical applications[J]. Molecules, 2023, 28(9): 3922. [19] Luzuriaga M A, Shahrivarkevishahi A, Herbert F C, et al. Biomaterials and nanomaterials for sustained release vaccine delivery[J]. WIREs Nanomedicine and Nanobiotechnology, 2021, 13(6): e1735. [20] Bedhiafi T, Idoudi S, Alhams A A, et al. Applications of polydopaminic nanomaterials in mucosal drug delivery[J]. Journal of Controlled Release, 2023, 353: 842-849. [21] Kiaee G, Dimitrakakis N, Sharifzadeh S, et al. Laponite-based nanomaterials for drug delivery[J]. Advanced Healthcare Materials, 2022, 11(7): 2102054. [22] Liu T, Lu Y, Zhan R, et al. Nanomaterials and nanomaterials-based drug delivery to promote cutaneous wound healing[J]. Advanced Drug Delivery Reviews, 2023, 193: 114670. [23] Jiang Z, Xu Y, Du G, et al. Emerging advances in delivery systems for mRNA cancer vaccines[J]. Journal of Controlled Release, 2024, 370: 287-301. [24] 呼倩, 杜相革. 纳米助剂对防治西花蓟马五种植物源农药的增效作用[J]. 中国生物防治学报, 2021, 37(3): 459. [25] Qiao H, Jiang Q, Zhao J, et al. Nano-delivery platform with strong protection and efficient delivery: Preparation of self-assembled RNA pesticide with dual RNAi targets against Apolygus lucorum[J]. Journal of Nanobiotechnology, 2025, 23(1): 93. [26] 赵晓敏, 赖忠晓. 几种植物源农药对苹果主要害虫的生物活性[J]. 中国生物防治学报, 2022, 38(6): 1385. [27] 杨学涛, 王秀平. 77种植物提取物杀虫活性初步研究[J]. 中国生物防治学报, 2024, 40(5): 987. [28] 张兴, 马志卿. 植物源农药研究进展[J]. 中国生物防治学报, 2015, 31(5): 685. [29] Kilani-Morakchi S, Morakchi-Goudjil H, Sifi K. Azadirachtin-based insecticide: Overview, risk assessments, and future directions[J]. Frontiers in Agronomy, 2021, 3: 676208. [30] 李猛, 王振. 1.0%苦参碱可溶液剂的配方及润湿和喷雾性能[J]. 中国生物防治学报, 2022, 38(6): 1410. [31] Yan S, Hu Q, Jiang Q, et al. Simple osthole/nanocarrier pesticide efficiently controls both pests and diseases fulfilling the need of green production of strawberry[J]. ACS Applied Materials & Interfaces, 2021, 13(30): 36350-36360. [32] Wend K, Zorrilla L, Freimoser F M, et al. Microbial pesticides–challenges and future perspectives for testing and safety assessment with respect to human health[J]. Environmental Health, 2024, 23(1): 49. [33] K?hl J, Kolnaar R, Ravensberg W J. Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy[J]. Frontiers in Plant Science, 2019, 10: 845. [34] Ayilara M S, Adeleke B S, Akinola S A, et al. Biopesticides as a promising alternative to synthetic pesticides: A case for microbial pesticides, phytopesticides, and nanobiopesticides[J]. Frontiers in Microbiology, 2023, 14: 1040901. [35] Liu X, Zheng Y, Zhang S, et al. Perylenediimide-cored cationic nanocarriers deliver virus DNA to kill insect pests[J]. Polymer Chemistry, 2016, 7(22): 3740-3746. [36] Zheng Y, You S, Ji C, et al. Development of an amino acid-functionalized fluorescent nanocarrier to deliver a toxin to kill insect pests[J]. Advanced Materials, 2016, 28(7): 1375-1380. [37] Henry G, Thonart P, Ongena M. PAMPs, MAMPs, DAMPs and others: An update on the diversity of plant immunity elicitors[J]. Biotechnology, Agronomy and Society and Environment, 2012, 16: 257-268. [38] Montesano M, Brader G, Palva E T. Pathogen derived elicitors: searching for receptors in plants[J]. Molecular Plant Pathology, 2003, 4(1): 73-79. [39] Schwessinger B, Ronald P C. Plant innate immunity: Perception of conserved microbial signatures[J]. Annual Review of Plant Biology, 2012, 63(1): 451-482. [40] Kulye M, Liu H, Zhang Y, et al. Hrip1, a novel protein elicitor from necrotrophic fungus, Alternaria tenuissima, elicits cell death, expression of defence-related genes and systemic acquired resistance in tobacco[J]. Plant, Cell & Environment, 2012, 35(12): 2104-2120. [41] Jiang Q, Xie Y, Zhou B, et al. Nanomaterial inactivates environmental virus and enhances plant immunity for controlling tobacco mosaic virus disease[J]. Nature Communications, 2024, 15(1): 8509. [42] Wang Y, Li M, Ying J, et al. High-efficiency green management of potato late blight by a self-assembled multicomponent nano-bioprotectant[J]. Nature Communications, 2023, 14(1): 5622. [43] Bartlett D W, Davis M E. Effect of siRNA nuclease stability on the in vitro and in vivo kinetics of siRNA-mediated gene silencing[J]. Biotechnology and Bioengineering, 2007, 97(4): 909-921. [44] Wang Y, Yan Q, Lan C, et al. Nanoparticle carriers enhance RNA stability and uptake efficiency and prolong the protection against Rhizoctonia solani[J]. Phytopathology Research, 2023, 5(1): 2. [45] Ma Z, Zheng Y, Chao Z, et al. Visualization of the process of a nanocarrier-mediated gene delivery: Stabilization, endocytosis and endosomal escape of genes for intracellular spreading[J]. Journal of Nanobiotechnology, 2022, 20: 124. [46] Lin Y H, Huang J H, Liu Y, et al. Oral delivery of dsRNA lipoplexes to German cockroach protects dsRNA from degradation and induces RNAi response[J]. Pest Management Science, 2017, 73(5): 960-966. [47] Chao Z, Ma Z, Zhang Y, et al. Establishment of star polycation-based RNA interference system in all developmental stages of fall armyworm Spodoptera frugiperda[J]. Entomologia Generalis, 2023, 43: 127-137. [48] Keppanan R, Karuppannasamy A, Nagaraja B C, et al. Effectiveness of chitosan nanohydrogel mediated encapsulation of EcR dsRNA against the whitefly, Bemisia tabaci Asia-I (Gennedius) (Hemiptera: Aleyordidae) [J]. Pesticide Biochemistry and Physiology, 2024, 198: 105712. [49] Zhang Y, Shin J, Sun H, et al. High aspect ratio polymer nanocarriers for gene delivery and expression in plants[J]. Nano Letters, 2025, 25(2): 681-690. [50] Ma Y F, Liu T T, Zhao Y Q, et al. RNA interference-screening of potentially lethal gene targets in the white-backed planthopper Sogatella furcifera via a spray-induced and nanocarrier-delivered gene ailencing system[J]. Journal of Agricultural and Food Chemistry, 2024, 72(2): 1007-1016. [51] Zhao J, Yan S, Li M, et al. NPFR regulates the synthesis and metabolism of lipids and glycogen via AMPK: Novel targets for efficient corn borer management[J]. International Journal of Biological Macromolecules, 2023, 247: 125816. [52] Li M, Ma Z, Peng M, et al. A gene and drug co-delivery application helps to solve the short life disadvantage of RNA drug[J]. Nano Today, 2022, 43: 101452. [53] Yan S, Li M, Jiang Q, et al. Self-assembled co-delivery nanoplatform for increasing the broad-spectrum susceptibility of fall armyworm toward insecticides[J]. Journal of Advanced Research, 2025, 67: 93-104. [54] Lu Q, Cui H, Li W, et al. Synthetic nanoscale RNAi constructs as pesticides for the control of Locust migratoria[J]. Journal of Agricultural and Food Chemistry, 2022, 70(35): 10762-10770. [55] Christiaens O, Tardajos M G, Martinez Reyna Z L, et al. Increased RNAi efficacy in Spodoptera exigua via the formulation of dsRNA with guanylated polymers[J]. Frontiers in Physiology, 2018, 9: 316. [56] Su C, Liu S, Sun M, et al. Delivery of Methoprene-tolerant dsRNA to improve RNAi efficiency by modified liposomes for pest control[J]. ACS Applied Materials & Interfaces, 2023, 15(10): 13576-13588. [57] Zhou H, Wan F, Jian Y, et al. Chitosan/dsRNA polyplex nanoparticles advance environmental RNA interference efficiency through activating clathrin-dependent endocytosis[J]. International Journal of Biological Macromolecules, 2023, 253: 127021. [58] Parsons K H, Mondal M H, McCormick C L, et al. Guanidinium-functionalized interpol electrolyte complexes enabling RNAi in resistant insect pests[J]. Biomacromolecules, 2018, 19(4): 1111-1117. |