[1] 夏耀民, 鲁艳辉, 朱勋, 等. 华中地区小菜蛾对9种杀虫剂的抗药性测定[J]. 中国蔬菜, 2013(22):75-80. [2] 陈琼, 陈洁琼, 江瑛, 等. 江西省小菜蛾田间种群的抗药性监测[J]. 江苏农业科学, 2015, 43(6):113-116. [3] 符伟, 魏娟, 王秋丽, 等. 湖南不同地区小菜蛾对药剂敏感性比较[J]. 应用昆虫学报, 2012, 49(2):477-481. [4] 尹艳琼, 李向永, 赵雪晴, 等. 云南不同菜区小菜蛾对三种生物农药的抗药性及其变化趋势[J]. 应用昆虫学报, 2016, 53(2):285-291. [5] Zalucki M P, Shabbir A, Silva R, et al. Estimating the economic cost of one of the world's major insect pests, Plutella xylostella (Lepidoptera:Plutellidae):just how long is a piece of string[J]. Journal of Economic Entomology, 2012, 105(4):1115-1129. [6] 李振宇, 陈焕瑜, 包华理, 等. 小菜蛾区域性抗药性治理技术研究[J]. 应用昆虫学报, 2016, 53(2):247-255. [7] Schnepf E, Criekmore N, van Rie J, et al. Bacillus thuringiensis and its pesticidal crystal proteins[J]. Microbiology and Molecular Biology Reviews, 1998, 62(3):775-806. [8] 李怡萍, 梁革梅, 仵均祥, 等. 苏云金芽孢杆菌杀虫机理及害虫对其抗性机制的研究进展[J]. 西北农林科技大学学报(自然科学版), 2010, 38(9):118-127. [9] 关雄, 蔡峻. 我国苏云金杆菌研究60年[J]. 微生物学通报, 2014, 41(3):459-465. [10] Griffiths J S, Aroian R V, Raffi V. Many roads to resistance:how invertebrates adapt to Bt toxins[J]. Bioessays, 2005, 27(6):614-624. [11] Tabashnik B E, Cushing N L, Finson N, et al. Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera:Plutellidae)[J]. Journal of Economic Entomology, 1990, 83(5):1671-1676. [12] Guo Z J, Kang S, Chen D F, et al. MAPK signaling pathway alters expression of midgut ALP and ABCC genes and causes resistance to Bacillus thuringiensis Cry1Ac toxin in Diamondback Moth[J]. PLoS Genetics, 2015, 11(4):1-32. [13] 郭磊, 边全乐, 张宏军, 等. 小菜蛾抗药性监测方法——叶片药膜法[J]. 应用昆虫学报, 2013, 50(2):556-560. [14] 邵振润, 冯夏, 张帅, 等. 十字花科小菜蛾抗药性监测技术规程NY/T 2360-2013[M]. 北京:中国农业出版社, 2013. [15] 叶超. 华东地区小菜蛾抗药性监测和 PxGlucla 亚基 A309v 突变与阿维菌素抗性的关系[D]. 南京:南京农业大学, 2014. [16] 杨海霞, 王欢, 董辉, 等. 沈阳地区小菜蛾对五种常用杀虫剂的抗性测定[J]. 北方园艺, 2011(18):166-168. [17] 陈澄宇, 史雪岩, 髙希武. 昆虫对拟除虫菊酯类杀虫剂的代谢抗性机制研究进展[J]. 农药学学报, 2016, 18(5):545-555. [18] Guo L, Wang Y, Zhou X G, et al. Functional analysis of a point mutation in the ryanodine receptor of Plutella xylostella (L.) associated with resistance to chlorantraniliprole[J]. Pest Management Science, 2014, 7(7):1083-1089. [19] Crickmore N. Bacillus thuringiensis resistance in Plutella -too many trees?[J]. Current Opinion in Insect Science, 2016, 15:84-88. [20] 冯夏, 陈焕瑜, 帅应垣. 广东小菜蛾对苏芸金杆菌的抗性研究[J]. 昆虫学报, 1996, 39(3):238-244. [21] 束长龙, 张风娇, 黄颖, 等. Bt杀虫基因研究现状与趋势[J]. 中国科学(生命科学), 2016, 46(5):548-555. [22] Zhu X, Lei Y Y, Yang Y J, et al. Construction and characterisation of near-isogenic Plutella xylostella (Lepidoptera:Plutellidae) strains resistant to Cry1Ac toxin[J]. Pest Management Science, 2015, 71:225-233. [23] Shu C L, Su H Q, Zhang J, et al. Characterization of cry9Da4, cry9Eb2, and cry9Ee1 genes from Bacillus thuringiensis strain T03B001[J]. Applied Microbiology and Biotechnology, 2013, 97(22):9705-9713. [24] Sun Y J, Fu Z J, Ding X Z, et al. Evaluating the insecticidal genes and their expressed products in Bacillus thuringiensis strains by combining PCR with mass spectrometry[J]. Applied and Environmental Microbiology, 2008, 74(21):6811-6813. [25] Tabashnik B E, Malvar T, Liu Y B, et al. Cross-resistance of the diamondback moth indicates altered interactions with domain Ⅱ of Bacillus thuringiensis toxins[J]. Applied and Environmental Microbiology, 1996, 62(8):2839-2844. |