[1] Jones J T, Haegeman A, Danchin E G, et al. Top 10 plant-parasitic nematodes in molecular plant pathology[J]. Molecular Plant Pathology, 2013, 14(9):946-961. [2] 李云飞, 陈雪娇, 陈雨, 等. 二硫氰基甲烷对水稻干尖线虫的防治效果研究[J]. 植物检疫, 2014, 28(3):50-53. [3] Huang C S, Huang S P. Bionomics of white-tip nematode, Aphelenchoides besseyi in rice florets and developing grains[J]. Botanical Bulletin of Academia Sinica, 1972, 13(1):3-10. [4] 裴艳艳, 程曦, 徐春玲, 等. 中国水稻干尖线虫部分群体对水稻的致病力测定[J]. 中国水稻科学, 2012, 26(2):218-226. [5] Bridge J, Luc M, Plowright R A. Nematode parasites of rice[M]//Luc M, Sikora R A, Bridge J, eds. Plant Parasitic Nematodes in Subtropical and Tropical Agriculture. Wallingford:CAB Internation Institute of Parasitology, 2005, 87-130. [6] Wang D W, Peng X F, Xie H, et al. Arabidopsis thaliana as a suitable model host for research on interactions between plant and foliar nematodes, parasites of plant shoot[J]. Scientific Reports, 2016, 6:38286. [7] Sun M J, Liu W H, Lin M S. Effects of temperature, humidity and different rice growth stages on vertical migration of Aphelenchoides besseyi[J]. Rice Science, 2009, 16:301-306. [8] 杨红福, 束兆林, 陈宏州, 等. 20%咪鲜胺·噻唑膦·戊唑醇悬浮剂对水稻种传病害防治效果[J]. 农药, 2018, 57(7):536-538. [9] 姚克兵, 庄义庆, 杨红福, 等. 几种农药对水稻干尖线虫的毒力测定及田间控制作用[J]. 农药, 2016, 55(3):217-222. [10] 刘刚. 噻唑膦可替代杀螟丹防治水稻干尖线虫病[J]. 农药市场信息, 2016(10):4, 48. [11] Li Y Y, Zhang Y, Hu Q, et al. Effect of bran moisture content and initial population density on mass production of Tyrophagus putrescentiae (Schrank) (Acari:Acaridae)[J]. Systematic and Applied Acarology, 2015, 20(5):497-506. [12] Beeman A Q, Njus Z L, Pandey S, et al. Chip technologies for screening chemical and biological agents against plant-parasitic nematodes[J]. Phytopathology, 2016, 106(12):1563-1571. [13] Zhou L, Yun G, Wang Y, et al. Evaluation of bacterial biological control agents for control of root-knot nematode disease on tomato[J]. Crop Protection, 2016, 84:8-13. [14] Lahm G P, Desaeger J, Smith B K, et al. The discovery of fluazaindolizine:A new product for the control of plant parasitic nematodes[J]. Bioorganic Medicinal Chemistry Letters, 2017, 27(7):1572-1575. [15] Stirling G R, Wong E, Bhuiyan S. Pasteuria, a bacterial parasite of plant-parasitic nematodes:its occurrence in Australian sugarcane soils and its role as a biological control agent in naturally infested soil[J]. Australasian Plant Pathology, 2017, 46(6):563-569. [16] Gerson U, Smiley R, Ochoa R. Mites (Acari) for Pest Control[M]. USA:Wiley-Blackwell, 2003, 539. [17] Gerson U, Weintraub P G. Mites for the control of pests in protected cultivation[J]. Pest Management Science, 2007, 63(7):658-676. [18] Prischmann-Voldseth D A, Dashiell K E. Effects of releasing a generalist predator (Acari:Gaeolaelaps aculeifer) on a subterranean insect herbivore (Coleoptera:Diabrotica virgifera virgifera)[J]. Biological Control, 2013, 65(2):190-199. [19] Abou El-Atta E M, Ghazy N A, Osman M A. Effects of temperature on the life-history traits of sancassania (caloglyphus) berlesei (acari:astigmatina:acaridae) feeding on root-knot nematodes, Meloidogyne spp. (nematode:meloidogynidae)[J]. Experimental and Applied Acarology, 2014, 64(3):299-307. [20] Ulug D, Hazir S, Kaya H K, et al. Natural enemies of natural enemies:the potential top-down impact of predators on entomopathogenic nematode populations[J]. Ecological Entomology, 2014, 39(4):462-469. [21] Abou El-Atta E M, Osman M A. Development and reproductive potential of Tyrophagus putrescentiae (Acari:Acaridae) on plant-parasitic nematodes and artificial diets[J]. Experimental and Applied Acarology, 2016, 68(4):477-483. [22] Abou-Awad B, Korayem A M, Hassan M F, et al. Life history of the predatory mite Lasioseius athiasae (Acari, Ascidae) on various kinds of food substances:A polypeptide analysis of prey consideration[J]. Journal of Applied Entomology, 2001, 125(3):125-130. [23] Stirling G R, Stirling A M, Walter D E. The mesostigmatid mite Protogamasellus mica, an effective predator of free-living and plant-parasitic nematodes[J]. Journal of Nematology, 2017, 49(3):327-333. [24] Oliveira A R, de Moraes G J, Ferraz L C. Consumption rate of phytonematodes by Pergalumna sp. (Acari:Oribatida:Galumnidae) under laboratory conditions determined by a new method[J]. Experimental and Applied Acarology, 2007, 41(3):183-189. [25] Chen Y L, Xu C L, Xu X N, et al. Evaluation of consumption abilities of Blattisocius dolichus (Acari:Blattisociidae) on a plant-parasitic nematode, Radopholus similis (Tylenchida:Pratylenchidae)[J]. Experimental and Applied Acarology, 2013, 60(3):289-298. [26] Xu C L, Chen Y L, Xu X N, et al. Evaluation of Blattisocius dolichus (Acari:Blattisociidae) for biocontrol of root-knot nematode, Meloidogyne incognita (Tylenchida:Heteroderidae)[J]. BioControl, 2014, 59(5):617-624. [27] Yang S H, Wang D, Chen C, et al. Evaluation of Stratiolaelaps scimitus (Acari:Laelapidae) for controlling the root-knot nematode, Meloidogyne incognita (Tylenchida:Heteroderidae)[J]. Scientific Reports, 2020, 10:5645. [28] 江高飞, 陈飞, 李晓娇, 等. 巴氏新小绥螨的研究进展[J]. 中国南方果树, 2012, 41(2):36-40. [29] Jafari S, Fathipour Y, Faraji F, et al. Demographic response to constant temperatures in Neoseiulus barkeri (Phytoseiidae) fed on Tetranychus urticae (Tetranychidae)[J]. Systematic and Applied Acarology, 2010, 15(2):83-99. [30] Wu S Y, Gao Y L, Xu X N, et al. Feeding on Beauveria bassiana-treated Frankliniella occidentalis causes negative effects on the predatory mite Neoseiulus barkeri[J]. Scientific Reports, 2015, 5:12033. [31] Liu M X, Chu W Q, Xu C, et al. Extraguild prey availability reduced cannibalism and reciprocal intraguild predation of Neoseiulus barkeri (Acari:Phytoseiidae) and Scolothrips takahashii (Thysanoptera:Thripidae)[J]. Systematic & Applied Acarology, 2020, 25(5):775-786. [32] 宋树贤, 刘光华, 辛天蓉, 等. 巴氏新小绥螨对朱砂叶螨的捕食效能[J]. 南昌大学学报(理科版), 2012, 36(5):486-489. [33] 徐学农, 吕佳乐, 王恩东. 捕食螨在中国的研究与应用[J]. 中国植保导刊, 2013, 33(10):23-30. [34] 周万琴, 徐春玲, 徐学农, 等. 巴氏新小绥螨的新特性——捕食植物线虫及其发育繁殖[J]. 中国生物防控学报, 2012, 28(4):484-489. [35] 尚素琴, 陈耀年. 巴氏新小绥螨在马铃薯腐烂茎线虫上的实验种群生命表及其捕食作用[J]. 植物保护学报, 2017, 44(4):589-594. [36] Yang S H, Zhou W Q, Wang D W, et al. Evaluation of Neoseiulus barkeri (Acari:Phytoseiidae) for the control of plant parasitic nematodes, Radopholus similis (Tylenchida:Pratylenchidae) and Meloidogyne incognita (Tylenchida:Heteroderidae)[J]. Biocontrol Science and Technology, 2020, 30(3):201-211. [37] Maia A D H N, Luiz A J B, Campanhola C. Statistical inference on associated fertility life table parameters using jackknife technique:computational aspects[J]. Journal of Economic Entomology, 2000, 93(2):511-518. [38] Holling C S. Some characteristics of simple types of predation and parasitism[J]. The Canadian Entomologist, 1959, 91(7):385-398. [39] Lima D B, Melo J W S, Gondim M G C, et al. Acaricide-impaired functional predation response of the phytoseiid mite Neoseiulus baraki to the coconut mite Aceria guerreronis[J]. Ecotoxicology, 2015, 24(5):1124-1130. [40] Li Y Y, Liu M X, Zhou H W, et al. Evaluation of Neoseiulus barkeri (Acari:Phytoseiidae) for control of Eotetranychus kankitus (Acari:Tetranychidae)[J]. Journal of Economic Entomology, 2017, 110(53):903-914. [41] 裴艳艳, 骆爱丽, 谢辉, 等. 中国不同地区水稻干尖线虫种群的繁殖特性研究[J]. 西北农林科技大学学报(自然科学版), 2010, 38(6):165-170. [42] Jafari S, Fathipour Y, Faraji F. Temperature-dependent development of Neoseiulus barkeri (Acari:Phytoseiidae) on Tetranychus urticae (Acari:Tetranychidae) at seven constant temperatures[J]. Chinese Insect Science:English Version, 2012, 19(2):220-228. |