[1] Spadaro D, Gullino M L. Improving the efficacy of biocontrol agents against soilborne pathogens[J]. Crop Protection, 2005, 24(7):601-613. [2] 徐同, 钟静萍, 李德葆. 木霉对土传病原真菌的拮抗作用[J]. 植物病理学报, 1993, 23(1):65-69. [3] 徐同, 柳良好. 木霉几丁质酶及其对植物病原真菌的拮抗作用[J]. 植物病理学报, 2002(2):97-102. [4] 王慧, 傅俊范, 周如军, 等. 木霉菌ECT-01-2对人参锈腐病菌的拮抗作用[J]. 河南农业科学, 2008(2):66-69. [5] 姚艳平, 李友莲, 王建明, 等. 木霉菌对植物病原真菌拮抗作用的研究[J]. 山西农业科学, 2013, 41(4):369-371. [6] 胡娴, 何珊, 史红安, 等. 木霉菌应用研究进展[J]. 湖北工程学院学报, 2019, 39(6):50-55. [7] 张眉, 吴斌, 徐德坤, 等. 棘孢木霉JM-1菌株对麦根腐离蠕孢的拮抗机制[J]. 山东农业科学, 2019, 51(3):92-96. [8] Li Y Q, Song K, Li Y C, et al. Statistical culture-based strategies to enhance chlamydospore production by Trichoderma harzianum SH2303 in liquid fermentation[J]. Journal of Zhejiang University Science B, 2016, 17(8):619-627. [9] 高雪丽. 侧钩木霉y01的分离、鉴定与固态发酵产孢研究[D]. 浙江:浙江大学, 2014. [10] 敖新宇, 程立君, 陈玉惠. 生防木霉SS003菌株(Trichoderma atroviride)的固体发酵工艺研究[J]. 江西农业大学学报, 2012, 34(6):1256-1261. [11] Bhargav S, Panda B P, Ali M. Solid-state fermentation:An overview[J]. Chemical and Biochemical Engineering Quarterly, 2008, 22(1):49-70. [12] Larroche C, Gros J B. Special transformation processes using fungal spores and immobilized cells[J]. Advances of Biochemical Engineering-Biotechndogy., 1997, 55:179-220. [13] Barrios-González J, Mejía A. Production of secondary metabolites by solid-state fermentation[J]. Biotechnology Annual Review, 1996, 2:85-121. [14] Oriol E, Schettino B, Viniegra-Gonzales G, et al. Solid-state culture of Aspergillus niger on support[J]. Journal of Fermentation Technology, 1988, 66(1):57-62. [15] 乔长晟, 钟堃, 陈笑, 等. 惰性载体固态发酵法生产γ-聚谷氨酸的方法[P]. 天津:CN101705260A, 2010-05-12. [16] Marin-Cervantes M D, Matsumoto Y, Ramirez-Coutino L, et al. Effect of moisture content in polyurethane foams as support for solid-substrate fermentation of Lecanicillium lecanii on the production profiles of chitinases[J]. Process Biochemistry, 2008, 43(1):24-32. [17] Xu X Q, Yu Y F, Shi Y J. Evaluation of inert and organic carriers for Verticillium lecanii spore production in solid-state fermentation[J]. Biotechnology Letters, 2011, 33(4):763-768. [18] Banos J G, Tomasini A, Szakacs G, et al. High lovastatin production by Aspergillus terreus in solid-state fermentation on polyurethane foam:An artificial inert support[J]. Journal of Bioscience and Bioengineering, 2009, 108(2):105-110. [19] Buenrostro-Figueroa J, Ascacio-Valdes A, Sepulveda L, et al. Ellagic acid production by solid-state fermentation influenced by the inert solid supports[J]. Emirates Journal of Food and Agriculture, 2018, 30(9):750-757. [20] John R P, Nampoothiri K M, Pandey A. Polyurethane foam as an inert carrier for the production of l(+)-lactic acid by Lactobacillus casei under solid-state fermentation[J]. Letters in Applied Microbiology, 2007, 44(6):582-587. [21] Subbalaxmi S, Murty V R. Process optimization for tannase production by Bacillus gottheilii m2s2 on inert polyurethane foam support[J]. Biocatalysis and Agricultural Biotechnology, 2016, 7:48-55. [22] Hu T G, Zhou Y J, Dai L M, et al. Enhanced cellulase production by solid state fermentation with polyurethane foam as inert supports[J]. Procedia Engineering, 2011, 18:335-340. [23] Larroche C. Microbial growth and sporulation behaviour in solid-state fermentation[J]. Journal of Scientific and Industrial Research, 1996, 55(5):408-423. [24] 王军, 旷文丰, 陈晨, 等. 液体发酵因子对棘孢木霉Tr148c分生孢子产量的影响[J]. 安徽农业大学学报, 2015, 42(4):595-599. [25] 宋巧英, 朱振元. 棘孢木霉液体发酵条件优化[J]. 食品工业科技, 2018, 39(6):140-144. [26] Lydia P O, Frans J W, Reinetta M B, et al. Defined media and inert supports:Their potential as solid-state fermentation production systems[J]. Trends in Biotechnology, 2000, 18(8):356-360. [27] 俞云峰. 不同惰性载体上发酵产蜡蚧轮枝菌分生孢子生物特性的研究[D]. 浙江:浙江理工大学, 2010. [28] Prabhu G N, Chandrasekaran M. Polystyrene-an inert carrier for lxxx-glutaminase production by marine Vibrio costicola under solid-state fermentation[J]. World Journal of Microbiology and Biotechnology, 1995, 11(6):683-684. [29] Rezende L C D, Carvalho A L D A, Costa L B, et al. Optimizing mass production of Trichoderma asperelloides by submerged liquid fermentation and its antagonism against Sclerotinia sclerotiorum[J]. World Journal of Microbiology and Biotechnology, 2020, 36(8):113. [30] 吴娜, 朱金峰, 王海涛, 等. 碳、氮对茄病镰刀菌与棘孢木霉菌丝生长及产孢的影响[J]. 南方农业, 2018, 12(7):1-3. [31] 杨云东, 王倩, 张佳婵, 等. 糖蜜及其发酵制品的应用研究进展[J]. 食品工业, 2020, 41(3):232-236. [32] 雷一鸣, 夏舒. 有机氮源在微生物发酵中的应用分析[J]. 食品安全导刊, 2021(9):146, 148. [33] 李朝波, 翟秀超, 温琦, 等. 添加不同有机氮源对L-赖氨酸发酵的作用[J]. 粮食与食品工业, 2021, 28(3):44-47. [34] 杜丽红, 郝亚男, 陈宁, 等. 有机氮源及其在微生物发酵中的应用[J]. 发酵科技通讯, 2019, 48(1):1-4. [35] 董海燕. 棘孢木霉固体发酵及应用研究[D]. 天津:天津科技大学, 2018. |