[1] Gan P, Nakata N, Suzuki T, et al. Markers to differentiate species of anthracnose fungi identify Colletotrichum fructicola as the predominant virulent species in strawberry plants in Chiba Prefecture of Japan[J]. Journal of General Plant Pathology, 2017, 83(1):14-22. [2] Hirayama Y, Asano S, Ohki S T, et al. Weeds as the potential inoculum source of Colletotrichum fructicola responsible for strawberry anthracnose in Nara, Japan[J]. Journal of General Plant Pathology, 2018, 84(1):12-19. [3] 吉沐祥, 杨敬辉, 吴祥, 等. 草莓炭疽病的生物防治[J]. 江苏农业学报, 2013, 28(6):1498-1500. [4] 胡德玉, 钱春, 刘雪峰. 草莓炭疽病研究进展[J]. 中国蔬菜, 2014(12):9-14. [5] 姚红燕, 邱宏良, 陈若霞, 等. 几种药剂对草莓炭疽病的效果[J]. 植物保护, 2010, 36(6):162-164. [6] Pastrana A, Basallote-Ureba M, Aguado A, et al. Biological control of strawberry soil-borne pathogens Macrophomina phaseolina and Fusarium solani, using Trichoderma asperellum and Bacillus spp.[J]. Phytopathologia Mediterranea, 2016, 55(1):109-120. [7] Chilman L. Protecting strawberry production biologically[J]. Practical Hydroponics and Greenhouses, 2017(182):62. [8] Freeman S, Minz D, Kolesnik I, et al. Trichoderma biocontrol of Colletotrichum acutatum and Botrytis cinerea and survival in strawberry[J]. European Journal of Plant Pathology, 2004, 110(4):361-370. [9] Dwiastuti M E, Fitriasari P D. Exploration of Trichoderma spp. and fungal pathogen that causes strawberry anthracnose and examine of in vitro antagonistic activity[C]. Paper on International Tropical Horticulture Conference, 2013:17. [10] Karimi K, Ahari A B, Arzanlou M, et al. Application of the consolidated species concept to identify the causal agent of strawberry anthracnose in Iran and initial molecular dating of the Colletotrichum acutatum species complex[J]. European Journal of Plant Pathology, 2017, 147(2):375-387. [11] 张雪, 张志宏, 刘月学, 等. 木霉菌剂提高‘红颜’草莓炭疽病抗性的效应[J]. 西北农业学报, 2010, 19(8):153-156. [12] 陈娟, 王承芳, 黄杰峰, 等. 木霉菌制剂防治草莓苗期炭疽病效果研究[J]. 现代农业科技, 2015(7):115-119. [13] 马华升, 孔樟良, 阮松林, 等. 木霉菌制剂对草莓白粉病的防治研究[J]. 杭州农业与科技, 2009(6):23-25. [14] 马华升, 廖益民, 阮松林, 等. 绿色木霉菌株HZ0501对草莓灰霉病的防效研究[J]. 杭州农业与科技, 2010(1):27-28. [15] 张鹤, 杜国栋, 宋亚楠, 等. 防治草莓根腐病的木霉菌筛选、鉴定及其防病效果[J]. 沈阳农业大学学报, 2015, 46(6):654-660. [16] 陈书华, 李梅, 蒋细良, 等. 防治人参锈腐病木霉菌的筛选及防治效果[J]. 中国生物防治学报, 2016, 32(2):265-269. [17] 郎剑锋, 孔凡彬, 石明旺, 等. 哈茨木霉对7种植物病原菌的生防机制研究[J]. 河南科技学院学报, 自然科学版, 2013, 41(5), 32-35. [18] 赵玳琳, 赵兴丽, 卯婷婷, 等. 草莓根部侵染草莓炭疽菌的致病动态变化过程[J]. 西南农业学报, 2016, 29(3):574-578. [19] 李德全, 钱亚明, 周鸣鸣, 等. 海洋细菌NH-8防治草莓灰霉病机理及其抗菌物质分析[J]. 植物保护学报, 2016, 43(2):215-221. [20] Bisen K, Keswani C, Mishra S, et al. Unrealized potential of seed biopriming for versatile agriculture[M]. Nutrient Use Efficiency:from Basics to Advances. Springer, New Delhi, 2015, 193-206. [21] Chen J L, Sun S Z, Miao C P, et al. Endophytic Trichoderma gamsii YIM PH30019:a promising biocontrol agent with hyperosmolar, mycoparasitism, and antagonistic activities of induced volatile organic compounds on root-rot pathogenic fungi of Panax notoginseng[J]. Journal of Ginseng Research, 2016, 40(4):315-324. [22] Contreras-Cornejo H A, Macias R L, Cortes P C, et al. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis[J]. Plant Physiology, 2009, 149:1579-1592. [23] Fan L L, Fu K H, Yu C J, et al. Construction and functional analysis of Trichoderma harzianum mutants that modulate maize resistance to the pathogen Curvularia lunata[J]. Journal of Environmental Science and Health(Part B), 2014, 49(8):569-577. [24] Ghisalberti E L, Sivasithamparam K. Antifungal antibi-otics produced by Trichoderma spp[J]. Soil Biology and Biochemistry, 1991, 23(11):1011-1020. [25] 张量, 张敬泽. 渐绿木霉抑菌物质的分离纯化及其对植物病原菌的抑制作用[J]. 中国农业科学, 2015, 48(5):882-888. [26] Wonglom P, Daengsuwan W, Ito S, et al. Biological control of Sclerotium fruit rot of snake fruit and stem rot of lettuce by Trichoderma sp. T76-12/2 and the mechanisms involved[J]. Physiological and Molecular Plant Pathology, 2019, 107:1-7. [27] Khaledi N, Taheri P. Biocontrol mechanisms of Trichoderma harzianum against soybean charcoal rot caused by Macrophomina phaseolina[J]. Journal of Plant Protection Research, 2016, 56(1):21-31. [28] Tapwal A, Singh U, Singh G, et al. In vitro antagonism of Trichoderma viride against five phytopathogens[J]. Pest Technologe, 2011, 5(1):59-62. [29] 徐同, 钟静萍, 孟征. 木霉在植病生防中的地位[C]//全国生物防治学术讨论会论文集, 1991. [30] Mukherjee M, Mukherjee P K, Horwitz B A, et al. Trichoderma-plant-pathogen interactions:advances in genetics of biological control[J]. Indian Journal of Microbiology, 2012, 52(4):522-529. [31] 杨萍, 杨谦. 木霉重寄生过程分子机制的研究进展[J]. 中国农学通报, 2012, 28(27):163-166. [32] Tseng S C, Liu S Y, Yang H H, et al. Proteomic study of biocontrol mechanisms of Trichoderma harzianum ETS 323 in response to Rhizoctonia solani[J]. Journal of Agricultural and Food Chemistry, 2008, 56(16):6914-6922. [33] 贺字典, 宋士清, 高玉峰, 等. 棘孢木霉Trichoderma asperellum在土壤中定殖量的荧光定量PCR检测[J]. 植物保护学报, 2016, 43(4):552-558. [34] 王永阳. 防治苦瓜枯萎病的木霉菌株分离鉴定, 定殖检测及其防病促生机理[D]. 泰安:山东农业大学, 2018. [35] 张红骥, Allen G X, 许艳丽. 木霉菌对大豆幼苗生长的影响及在根部定殖研究[J]. 大豆科学, 2009, 28(3):511-515. |