[1] Qin X, Zhao X, Huang S, et al. Pest management via endophytic colonization of tobacco seedlings by the insect fungal pathogen Beauveria bassiana[J]. Pest Management Science, 2021, 77: 2007-2018. [2] 武玉环, 彭焕, 葛逢勇, 等. 5株生防真菌对孢囊线虫的杀线活性测定[J]. 生物技术通报, 2022, 38(11): 220-226. [3] Rivas-Franco F, Hampton G J, Morán-Diez E M, et al. Effect of coating maize seed with entomopathogenic fungi on plant growth and resistance against Fusarium graminearum and Costelytra giveni[J]. Biocontrol Science and Technology, 2019, 29(9): 877-900. [4] 隋丽, 路杨, 姜媛媛, 等. 内生性虫生真菌在生物防治中的研究现状与展望[J]. 玉米科学, 2021, 29(6): 169-174, 183. [5] Russo M L, Jaber L R, Scorsetti A C, et al. Effect of entomopatho-genic fungi introduced as corn endophytes on the development, reproduction, and food preference of the invasive fall armyworm Spodoptera frugiperda[J]. Journal of Pest Science, 2020, 150: 104347. [6] 谢敏, 路杨, 张云月, 等. 球孢白僵菌-玉米共生体对亚洲玉米螟个体发育的影响及其机理[J]. 应用昆虫学报, 2023, 60(6): 1851-1859. [7] 隋丽, 路杨, 谢敏, 等. 亚洲玉米螟对球孢白僵菌分生孢子和芽生孢子-玉米共生体的取食选择和嗅觉反应[J]. 昆虫学报, 2023, 66(11): 1482-1489. [8] Corneille J F, Thomas B, Frédéric F. Direct and indirect effect via endophytism of entomopathogenic fungi on the fitness of Myzuspersicae and its ability to spread PLRV on tobacco[J]. Insects, 2021, 12(2): 89. [9] Jaber L R, Salem N M. Endophytic colonisation of squash by the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales) for managing Zucchini yellow mosaic virus in cucurbits[J]. Bio-control Science and Technology, 2014, 24(10): 1096-1109. [10] Jaber L R. Grapevine leaf tissue colonization by the fungal entomopathogen Beauveria bassiana s.l. and its effect against downy mildew[J]. BioControl, 2015, 60(1): 103-112. [11] 隋丽, 路杨, 迟瑞凯, 等. 玉米大斑病胁迫下球孢白僵菌对玉米植株的影响及定殖规律[J]. 中国生物防治学报, 2023, 39(4): 804-812. [12] 李彦生, 金剑, 刘晓冰. 作物对大气CO2浓度升高生理响应研究进展[J]. 作物学报, 2020, 46(12): 1819-1830. [13] Wei Z H, Du T S, Li X N, et al. Interactive effects of elevated CO2 and N fertilization on yield and quality of tomato grown under reduced irrigation regimes[J]. Frontiers in Plant Science, 2018, 9: 328. [14] 宗毓铮, 张函青, 李萍, 等. 大气CO2与温度升高对北方冬小麦旗叶光合特性、碳氮代谢及产量的影响[J]. 中国农业科学, 2021, 54(23): 4984-4995. [15] 赵光影, 刘景双, 王洋. CO2浓度升高与氮添加对三江平原湿地小叶章生长的影响[J]. 应用生态学报, 2011, 22(6): 1653-1658. [16] Li H, Wang Z, Li S, et al. Multigenerational elevated atmospheric CO2 concentration induced changes of wheat grain quality via altering nitrogen reallocation and starch catabolism[J]. Environmental and Experimental Botany, 2023, 205: 105-127. [17] 蒋跃林, 姚玉刚, 张庆国, 等. 大气二氧化碳浓度升高条件下大豆光合色素含量的变化[J]. 作物研究, 2006, 20(2): 144-146. [18] Sui L, Zhu H, Wang D, et al. Tripartite interactions of an endophytic entomopathogenic fungus, Asian corn borer, and host maize under elevated carbon dioxide[J]. Pest Management Science, 2024, 80(9): 4575-4584. [19] Lee S H, Woo S Y, Je S M. Effects of elevated CO2 and water stress on physiological responses of Perilla frutescens var. japonica HARA[J]. Plant Growth Regulation, 2015, 75(2): 427-434. [20] 张春兰, 秦孜娟, 王桂芝, 等. 转录组与RNA-Sep技术[J]. 生物技术通报, 2012(12): 51-56. [21] Pleijel H, Sk?rby L, Wallin G, et al. Yield and grain quality of spring wheat (Triticum aestivum L. cv. Drabant) exposed to different concentrations of ozone in open-top chambers[J]. Enironmental Pollution, 1991, 69(2-3): 151-168. [22] Rangaswamy T, Sridhara S, Ramesh N, et al. Assessing the impact of higher levels of CO2 and temperature and their interactions on tomato (Solanum lycopersicum L.)[J]. Plants, 2021, 10(2): 256. [23] Teri K, Kristiina R, Kaisa R, et al. Fluxes of N2O, CH4 and CO2 in a meadow ecosystem exposed to elevated ozone and carbon dioxide for three years[J]. Enironmental Pollution, 2007, 145(3): 818-828. [24] De Costa W A, Weerakoon W M, Herath H M, et al. Physiology of yield determination of rice under elevated carbon dioxide at high temperatures in a subhumid tropical climate[J]. Field Crops Research, 2006, 96(2-3): 336-347. [25] Sui L, Zhu H, Xu W, et al. Elevated air temperature shifts the interactions between plants and endophytic fungal entomopathogens in an agroecosystem[J]. Fungal Ecology, 2020, 47: 100940. [26] 周如月, 林嘉龙, 李烨凡, 等. 灵芝β-葡萄糖苷酶基因的克隆与功能分析[J]. 菌物学报, 2022, 41(12): 1971-1979. [27] Erb M, Kliebenstein D. Plant secondary metabolites as defenses, regulators, and primary metabolites: the blurred functional trichotomy[J]. Plant physiology, 2020, 184(1): 39-52. [28] Wang Y, Wang Q, Zhao Y, et al. Systematic analysis of maize class III peroxidase gene family reveals a conserved subfamily involved in abiotic stress response[J]. Gene, 2015, 566(1): 95-108. [29] Simonetti E, Veronico P, Melillo M, et al. Analysis of class III peroxidase genes expressed in roots of resistant and susceptible wheat lines infected by Heterodera avenae[J]. Molecular Plant-Microbe Interactions, 2009, 22(9): 1081. [30] 黄先忠, 蒋才富, 廖立力, 等. 赤霉素作用机理的分子基础与调控模式研究进展[J]. 植物学通报, 2006(5): 499-510. [31] 叶元土, 吴萍, 蔡春芳, 等. 基于类固醇合成途径的生物进化及其产物的饲料资源利用[J]. 饲料工业, 2023, 44(6): 1-10. [32] Hedden P, Thomas S G. Gibberellin biosynthesis and its regulation [J]. The Biochemical journal, 2012, 444(1): 11-25. [33] Celedon J M, Bohlmann J. Oleoresin defenses in conifers: chemical diversity, terpene synthases and limitations of oleoresin defense under climate change[J]. New Phytologist, 2019, 224(4): 1444-1463. [34] Otsuka H, Hirai Y, Nagao T, et al. Anti-inflammatory activity of benzoxazinoids from roots of Coix lachryma-jobi var. ma-yuen[J]. Journal of Natural Products, 2004, 51(1): 74-79. [35] 隋丽, 万婷玉, 路杨, 等. 内生真菌对植物促生、抗逆作用研究进展[J]. 中国生物防治学报, 2021, 37(6): 1325-1331. |