[1] Chen Y P, Liu Q, Sun X Q, et al. Meloidogyne enterolobii MeMSP1 effector targets the glutathione-S-transferase phi GSTF family in Arabidopsis to manipulate host metabolism and promote nematode parasitism[J]. New phytologist, 2023, 240(6): 2468-2483. [2] 雷敬超, 黄惠琴. 南方根结线虫生物防治研究进展[J]. 中国生物防治, 2007, 23(增刊): 76-81. [3] 彭德良. 植物线虫病害: 我国粮食安全面临的重大挑战[J]. 生物技术通报, 2021, 37(7): 1-2. [4] 金娜, 刘倩, 简恒. 植物寄生线虫生物防治研究新进展[J]. 中国生物防治学报, 2015, 31(5): 789-800. [5] Roberti R, Veronesi A R, Cesari A, et al. Induction of PR proteins and resistance by the biocontrol agent Clonostachys rosea in wheat plants infected with Fusarium culmorum[J]. Plant Science, 2008, 175(3): 339-347. [6] Sun Z B, Sun M H, Li S D. Draft genome sequence of mycoparasite Clonostachys rosea strain 67-1[J]. Genome Announcements, 2015, 3: e00546-15. [7] Zou C, Tu H, Liu X, et al. PacC in the nematophagous fungus Clonostachys rosea controls virulence to nematodes[J]. Environmental Microbiology, 2010, 12(7): 1868-1877. [8] Johnson N C, Wilson G W T, Bowker M A, et al. Resource limitation is a driver of local adaptation in mycorrhizal symbioses[J]. Proceedings of the National Academy of Sciences, 2010, 107(5): 2093-2098. [9] Sun Z B, Li S D, Ren Q, et al. Biology and applications of Clonostachys rosea[J]. Applied Microbiology, 2020, 129: 486-495. [10] Gowrisri N, Elango K. Unveiling the antimicrobial and biocontrol potential of the Ascomycete fungus, Clonostachys rosea: A review[J]. The Microbe, 2025, 6: 100226. [11] Köhl J, Kolnaar R, Ravensberg W J. Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy[J]. Frontiers in Plant Science, 2019, 10: 845. [12] 张洁, 郭雪萍, 夏明聪, 等. 粉红螺旋聚孢霉NF-06固体发酵条件优化及其对南方根结线虫的防治效果[J]. 中国生物防治学报, 2020, 36(1): 105-112. [13] Garabedian S, van Gundy S D. Use of avermectins for the control of Meloidogyne incognita on tomatoes[J]. Journal of Nematology, 1983, 15(4): 503-510. [14] Vemmer M, Patel A V. Review of encapsulation methods suitable for microbial biological control agents[J]. Biological Control, 2013, 67(3): 380-389. [15] John R P, Tyagi R D, Brar S K. et al. Bio-encapsulation of microbial cells for targeted agricultural delivery[J]. Critical Reviews in Biotechnology, 2011, 31(3): 211-226. [16] Gharsallaoui A, Roudaut G, Chambin O, et al. Applications of spray-drying in microencapsulation of food ingredients: An overview[J]. Food Research International, 2007, 40(9): 1107-1121. [17] Schoebitz M, Lopez M D, Roldan A. Bioencapsulation of microbial inoculants for better soil-plant fertilization. a review[J]. Agronomy for Sustainable Development, 2013, 33: 751-765. [18] Schoebitz M, Simonin H, Poncelet D. Starch filler and osmoprotectants improve the survival of rhizobacteria in dried alginate beads[J]. Journal of Microencapsulation, 2012, 29(6): 532-538. [19] Dong J W, He Y H, Zhang J F, et al. Tuning alginate-bentonite microcapsule size and structure for the regulated release of P. putida Rs-198[J], Chinese Journal of Chemical Engineering, 2022, 48: 12-20. [20] Wu Z S, Guo L N, Qin S H, et al. Encapsulation of R. planticola Rs-2 from alginate-starch-bentonite and its controlled release and swelling behavior under simulated soil conditions[J]. Journal of Industrial Microbiology & Biotechnology, 2012, 39(2): 317-327. [21] 李琦, 姚拓, 阿不满, 等. 根际促生菌微胶囊剂研发及对苜蓿、燕麦促生效果评价[J]. 草地学报, 2019, 27(5): 8. [22] Schoebitz M, Lopez M D, Roldan A. Bioencapsulation of microbial inoculants for better soil-plant fertilization. a review[J]. Agronomy for Sustainable Development, 2013, 33: 751-765. [23] 王小兵, 钱娜, 汪晓丽, 等. 抗病促生复合芽孢杆菌水分散粒剂的研制与应用[J]. 微生物学通报, 2020, 47(12): 4349-4358. |