[1] Huang C, Cheng W, Feng Y, et al. Identification of WRKY transcription factors in Rosa chinensis and analysis of their expression response to alkali stress response[J]. Functional Plant Biology, 2024, 51. [2] 左煜, 宋昕怡, 谢婉茹. 农产品农药残留检测中高效液相色谱技术的应用现状、问题及对策研究[J]. 食品安全导刊, 2025(5): 145-147. [3] 江鹏. 蜂蜡中联苯菊酯和多菌灵残留及对蜜蜂卵发育的影响[D]. 合肥: 安徽农业大学, 2023. [4] 范宗强, 冯靖涵, 郑丽雪, 等. 枯草芽孢杆菌B579对黄瓜枯萎病的防治及其诱导抗性研究[J]. 生物技术通报, 2024, 40(7): 226-234. [5] Xingzhe Z, Xianghai M, Xiaodan J, et al. Preventive effect of Cleome spinosa against cucumber Fusarium wilt and improvement on cucumber growth and physiology[J]. Biotech, 2024, 14(4): 97. [6] Petkova M, Dimova M. Biological control of lettuce drop (Sclerotinia minor Jagger) using antagonistic Bacillus species[J]. Applied Microbiology, 2024, 4(3): 1283-1293. [7] Eliassaint A, Romero M A G, Tapia C M, et al. Characterization of Trichoderma spp. and their antagonistic activity against soilborne fungi associated with chickpea wilt in Sinaloa, Mexico[J]. Canadian Journal of Plant Pathology, 2025, 47(1): 12-25. [8] 吴巳雨. 长枝木霉HK16-1抗香蕉枯萎病活性物质的挖掘及抑菌效果分析[D]. 武汉: 华中农业大学, 2024. [9] Delgado C R, López B P, Cardoza E R, et al. Biocontrol potential of a native Trichoderma collection against Fusarium oxysporum f. sp. cubense subtropical Race 4[J]. Agricultivation, 2024, 14(11): 2016. [10] Kishorkumar C, Harish S, Karthikeyan G, et al. Antiviral efficacy of Bacillus sp. against groundnut bud necrosis Orthotospovirus in Cowpea[J]. International Journal of Plant & Soil Science, 2023, 35(18): 790-800. [11] Jazmín D H, Carolina A G, R M F, et al. Cellulase and chitinase activities and antagonism against Fusarium oxysporum f. sp. cubense race 1 of six Trichoderma strains isolated from Mexican maize cropping [J]. Biotechnology letters, 2023, 45(3): 387-400. [12] Zhen L, Ning X, Qiuying P, et al. A salt-tolerant strain of Trichoderma longibrachiatum HL167 is effective in alleviating salt stress, promoting plant growth, and managing Fusarium wilt disease in cowpea[J]. Journal of Fungi, 2023, 9(3): 304. [13] Chongyuan Z, Weiwei W, Ming X, et al. The combination of a biocontrol agent Trichoderma asperellum SC012 and Hymexazol reduces the effective fungicide dose to control Fusarium wilt in cowpea[J]. Journal of Fungi, 2021, 7(9): 685-685. [14] 谢海鹏, 林樱桃, 吴小燕, 等. 豇豆枯萎病生防细菌的筛选鉴定及抗病机理初探[J]. 热带作物学报, 2023, 44(6): 1224-1236. [15] Silva D F P, Santos D N S M, Araújo A D B, et al. Co-cultivations of Beauveria bassiana, Metarhizium anisopliae, and Trichoderma harzianum to produce bioactive compounds for application in agricultivation[J]. Fermentation, 2025, 11(1): 30. [16] Ma Q, Cong Y, Feng L, et al. Effects of mixed cultivation fermentation of Bacillus amyloliquefaciens and Trichoderma longibrachiatum on its constituent strains and the biocontrol of tomato Fusarium wilt[J]. Journal of Applied Microbiology, 2021, 132(1): 532-546. [17] 张尹强, 郝建秀, 赵远征, 等. 棘孢木霉PT-29与枯草芽孢杆菌S-16共培养对马铃薯枯萎病的防控作用[J]. 河南农业科学, 2024, 53(3): 95-102. [18] 陈凯, 隋丽娜, 赵忠娟, 等. 木霉共培养发酵对黄瓜枯萎病的防治效果[J]. 中国生物防治学报, 2022, 38(1): 108-114. [19] 彭治鑫, 赵栋霖, 林伟, 等. 固态共培养木霉和芽孢杆菌抗烟草黑胫病及其活性成分研究[J]. 中国烟草科学, 2023, 44(6): 36-43. [20] 陈迪, 侯巨梅, 邢梦玉, 等. 7株木霉菌对火龙果3种病原菌的拮抗作用[J]. 热带作物学报, 2020, 41(12): 2501-2506. [21] 宋波, 文国琴, 何瑶. 芒果病原菌的分离鉴定及生防芽孢杆菌的筛选[J]. 西南农业学报, 2024, 37(12): 2757-2764. [22] 郑旭蕊. 复合微生物菌剂的研制及其对尖孢镰刀菌防治效果研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. [23] 魏景超. 真菌鉴定手册[M]. 上海: 上海科学技术出版社, 1979, 132-493. [24] Gong Z, Yang Y, Zhang L, et al. First report of Polygonatum cyrtonema root rot caused by Trichoderma virens in China[J]. Plant Disease, 2024, 108(2): 525. [25] 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001. [26] I. M C , M. J G , Dianelis R, et al. Isolation and identification of a Bacillus sp. from freshwater sediment displaying potent activity against bacteria and phytopathogen fungi[J]. Current Microbiology, 2022, 79(12): 398-398. [27] Yao Y ,Wang L ,Zhai H, et al. Bacillus velezensis A-27 as a potential biocontrol agent against Meloidogyne incognita and effects on rhizosphere communities of celery in field[J]. Scientific Reports, 2025, 15(1): 1057. [28] 陈捷. 木霉菌剂制备与应用技术[M]. 北京: 中国农业出版社, 2023:56-93. [29] 李军平, 卢智琴, 罗宁, 等. 燕麦孢囊线虫生防真菌TL16发酵条件优化[J]. 草原与草坪, 2022, 42(5): 126-131, 141. [30] 朱晋, 杨文佳, 王宁. 贝莱斯芽孢杆菌高密度发酵工艺优化及其生物有机肥对水稻生长的影响[J]. 南方农业, 2024, 18(23): 26-34, 50. [31] 张希芬. 棘孢木霉与枯草芽孢杆菌种间互作防治烟草黑胫病研究[D]. 北京: 中国农业科学院, 2022. [32] 唐筱茸. 哈茨木霉ACCC30371与贝莱斯芽孢杆菌S3-1共培养体系对小麦的抗病促生作用[D]. 上海: 上海师范大学, 2023. [33] Rigert K S; Foster K W. Inheritance of resistance to two races of Fusarium wilt in three cowpea cultivars[J]. Crop Science. 1987, 27: 220-224. [34] 魏琪, 郭梅, 邵红涛, 等. 一株拮抗4种马铃薯病原真菌的拟康宁木霉的分离鉴定[J]. 植物保护, 2023, 49(4): 125-130, 139. [35] 韩亚伟, 骆恒斌, 张旭. ARC微生物菌剂对花生主要农艺性状的影响[J]. 乡村科技, 2025, 16(1): 85-89. [36] 熊明国. 微生物菌剂对草莓三种病害的防治效果及其对草莓生长的影响[J]. 湖北农业科学, 2022, 61(12): 57-60, 66. [37] 袁紫仪, 商美妮, 王琰, 等. 三株植物促生木霉的固体发酵工艺优化[J]. 微生物学通报, 2023, 50(1): 235-250. [38] 李洪涛, 周皓, 丁中涛. 微生物共培养产生新颖活性次生代谢产物的研究进展[J]. 云南大学学报(自然科学版), 2023, 45(2): 493-512. [39] 李恩琛, 张树武, 徐秉良, 等. 3株生防细菌间亲和性测定及其对苹果树腐烂病菌的抑制作用[J]. 甘肃农业大学学报, 2020, 55(5): 94-100. [40] Guo L, Xi B, Lu L. Strategies to enhance production of metabolites in microbial co-cultivation systems[J]. Bioresource Technology, 2024, 406: 131049. [41] 景芳, 张树武, 刘佳, 等. 长枝木霉T6生防菌剂发酵条件优化及其对辣椒立枯病的防治效果[J]. 中国生物防治学报, 2020, 36(1): 113-124. [42] 王娜, 林青, 华兰兰, 等. 响应面法优化里氏木霉产β-葡聚糖酶的固态发酵工艺[J]. 饲料工业, 2025, 46(3): 104-112. [43] 张希芬, 林伟, 李清钰, 等. 抗烟草疫霉活性木霉与芽孢杆菌共培养体系的构建与优化[J]. 中国烟草科学, 2022, 43(1): 61-68. [44] 杨昌发, 唐彩艳, 孙冰, 等. 橘绿木霉GF-11发酵刺梨渣的响应面法优化[J]. 中国生物防治学报, 2024, 40(2): 448-457. [45] 杨丹丹, 王建平, 马娜娜, 等. 绿色木霉固体发酵产孢子的条件优化[J]. 中国农学通报, 2020, 36(12): 111-119. [46] 李清钰. 枯草芽孢杆菌与棘孢木霉共培养条件优化及互作机制解析[D]. 北京: 中国农业科学院, 2023. [47] 魏周玲, 朱洪江, 陆宁, 等. 生防菌哈茨木霉TMN-1最佳固体发酵条件探究[J]. 植物医学, 2024, 3(4): 50-57. [48] 马红珍, 闫敏, 李磊, 等. 基于响应面法优化贝莱斯芽孢杆菌C44发酵参数[J]. 山西农业科学, 2023, 51(9): 1088-1097. [49] Sadahiro Y, Kato H, Williams R M, et al. Irpexine, an isoindolinone alkaloid produced by cocultivation of endophytic fungi, Irpex lacteus and Phaeosphaeria oryzae[J]. Journal of Natural Products, 2020, 83(5): 1368-1373. [50] Li H L, Li X M, Yang S Q, et al. Induced terreins production from marine red algal-derived endophytic fungus Aspergillus terreus EN-539 Co-cultivationd with symbiotic fungus Paecilomyces lilacinus EN-531[J]. The Journal of Antibiotics, 2020, 73(2): 108-111. |