[1] Barnes M. Codling moth occurrence, host race formation, and damage//van der Geest L P S, Evenhuis H H, eds. Tortricid Pests: Their Biology, Natural Enemies and Control [M]. Amsterdam: Elsevier Science, 1991. [2] 张学祖. 苹果蠹蛾(Carpocapsa pomonella L.)在我国的新发现[J]. 昆虫学报, 1957, 7(4): 467-472. [3] Wan F, Yin C, Tang R, et al. A chromosome-level genome assembly of Cydia pomonella provides insights into chemical ecology and insecticide resistance[J]. Nature Communications, 2019, 10(1): 4237. [4] Early R, Bradley B A, Dukes J S, et al. Global threats from invasive alien species in the twenty-first century and national response capacities[J]. Nature Communications, 2016, 7(1): 12485. [5] Hufbauer R A, Torchin M E. Integrating ecological and evolutionary theory of biological invasions[J]. Biological Invasions, 2007, 9(1): 79-96. [6] Blossey B, Notzold R. Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis[J]. Journal of Ecology, 1995, 83(5): 887-896. [7] Papanicolaou A, Schetelig M F, Arensburger P, et al. The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species[J]. Genome Biology, 2016, 17: 1-31. [8] Chen W, Hasegawa D K, Kaur N, et al. The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance[J]. BMC Biology, 2016, 14: 1-15. [9] Pearce S L, Clarke D F, East P D, et al. Genomic innovations, transcriptional plasticity and gene loss underlying the evolution and divergence of two highly polyphagous and invasive Helicoverpa pest species[J]. BMC Biology, 2017, 15: 1-30. [10] Cheng T, Wu J, Wu Y, et al. Genomic adaptation to polyphagy and insecticides in a major East Asian noctuid pest[J]. Nature Ecology & Evolution, 2017, 1(11): 1747-56. [11] Chen Q, Zhao H, Wen M, et al. Genome of the webworm Hyphantria cunea unveils genetic adaptations supporting its rapid invasion and spread[J]. Bmc Genomics, 2020, 21: 1-22. [12] Liu Z, Xing L, Huang W, et al. Chromosome-level genome assembly and population genomic analyses provide insights into adaptive evolution of the red turpentine beetle, Dendroctonus valens[J]. BMC Biology, 2022, 20(1): 190. [13] Soudi S, Crepeau M, Collier T C, et al. Genomic signatures of local adaptation in recent invasive Aedes aegypti populations in California[J]. BMC Genomics, 2023, 24(1): 311. [14] Men Q L, Chen M H, Zhang Y L, et al. Genetic structure and diversity of a newly invasive species, the codling moth, Cydia pomonella (L.)(Lepidoptera: Tortricidae) in China[J]. Biological invasions, 2013, 15: 447-58. [15] Zhou Z. A review on control of tobacco caterpillar, Spodoptera litura[J]. Chinese Bulletin of Entomology, 2009, 46(3): 354-61. [16] Valencia-Montoya W A, Elfekih S, North H L, et al. Adaptive introgression across semipermeable species boundaries between local Helicoverpa zea and invasive Helicoverpa armigera moths[J]. Molecular Biology and Evolution, 2020, 37(9): 2568-83. [17] Gershman A, Romer T G, Fan Y, et al. De novo genome assembly of the tobacco hornworm moth (Manduca sexta)[J]. G3, 2021, 11(1): jkaa047. [18] 罗晨, 张芝利. 烟粉虱Bemisia tabaci (Gennadius)研究概述[J]. 北京农业科学, 2000(S1): 4-13. [19] Giunti G, Benelli G, Campolo O, et al. Biology, ecology and invasiveness of the Mediterranean fruit fly, Ceratitis capitata: A review[J]. Entomologia Generalis, 2023, 43(6): 1221-39. [20] Walsh D B, Bolda M P, Goodhue R E, et al. Drosophila suzukii (Diptera: Drosophilidae): invasive pest of ripening soft fruit expanding its geographic range and damage potential[J]. Journal of Integrated Pest Management, 2011, 2(1): G1-G7. [21] Sayers E W, Beck J, Bolton E E, et al. Database resources of the national center for biotechnology information[J]. Nucleic Acids Research, 2021, 49(D1): D10. [22] Emms D M, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy[J]. Genome Biology, 2015, 16: 1-14. [23] Katoh K, Misawa K, Kuma K I, et al. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform[J]. Nucleic Acids Research, 2002, 30(14): 3059-66. [24] Capella-Gutiérrez S, Silla-Martínez J M, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses[J]. Bioinformatics, 2009, 25(15): 1972-1975. [25] Darriba D, Posada D, Kozlov A M, et al. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models[J]. Molecular Biology and Evolution, 2020, 37(1): 291-295. [26] Kozlov A M, Darriba D, Flouri T, et al. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference[J]. Bioinformatics, 2019, 35(21): 4453-4458. [27] Yang Z. PAML 4: phylogenetic analysis by maximum likelihood[J]. Molecular Biology and Evolution, 2007, 24(8): 1586-1591. [28] Han M V, Thomas G W, Lugo-Martinez J, et al. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3[J]. Molecular Biology and Evolution, 2013, 30(8): 1987-1997. [29] Potter S C, Luciani A, Eddy S R, et al. HMMER web server: 2018 update[J]. Nucleic Acids Research, 2018, 46(W1): W200-W4. [30] Castillo-Davis C I, Hartl D L. GeneMerge—post-genomic analysis, data mining, and hypothesis testing[J]. Bioinformatics, 2003, 19(7): 891-893. [31] El-Gebali S, Mistry J, Bateman A, et al. The Pfam protein families database in 2019[J]. Nucleic Acids Research, 2019, 47(D1): D427-D32. [32] Mavrevski R, Traykov M, Trenchev I, et al. Approaches to modeling of biological experimental data with GraphPad Prism software[J]. WSEAS Trans Syst Control, 2018, 13(1): 242-249. [33] Li X, Zhou Y, Wu K. Biological characteristics and energy metabolism of migrating insects[J]. Metabolites, 2023, 13(3): 439. [34] Zhao Z, Hui C, Peng S, et al. The world's 100 worst invasive alien insect species differ in their characteristics from related non-invasive species[J].Journal of Applied Ecology, 2023, 60(9): 1929-1938. [35] Lubawy J, Chowański S, Adamski Z, et al. Mitochondria as a target and central hub of energy division during cold stress in insects[J]. Frontiers in Zoology, 2022, 19(1): 1. [36] Bertrand C, Valet P, Castan-Laurell I. Apelin and energy metabolism[J]. Frontiers in Physiology, 2015, 6: 137232. [37] Hardie D G. Energy sensing by the AMP-activated protein kinase and its effects on muscle metabolism[J]. Proceedings of the Nutrition Society, 2011, 70(1): 92-9. [38] Ma E H, Poffenberger M C, Wong A H, et al. The role of AMPK in T cell metabolism and function[J]. Current Opinion in Immunology, 2017, 46: 45-52. [39] González-Sarrías A, Espín J C, Tomás-Barberán F A, et al. Gene expression, cell cycle arrest and MAPK signalling regulation in Caco-2 cells exposed to ellagic acid and its metabolites, urolithins[J]. Molecular Nutrition & Food Research, 2009, 53(6): 686-98. [40] 张霞, 孙琳琳, 钟殿胜. LKB1-AMPK-mTOR信号传导通路在肿瘤中的研究进展[J]. 中国肺癌杂志, 2011, 14(8): 685-693. [41] Saxton R A, Sabatini D M. mTOR signaling in growth, metabolism, and disease[J]. Cell, 2017, 168(6): 960-976. [42] López M. Hypothalamic AMPK and energy balance[J]. European Journal of Clinical Investigation, 2018, 48(9): e12996. [43] Huang Z, Tian Z, Zhao Y, et al. MAPK signaling pathway is essential for female reproductive regulation in the cabbage beetle, Colaphellus bowringi[J]. Cells, 2022, 11(10): 1602. [44] Xu Y, Wei W, Lin G, et al. The Ras/MAPK pathway is required for regenerative growth of wing discs in the black cutworm Agrotis ypsilon[J]. Insect Biochemistry and Molecular Biology, 2021, 131: 103552. [45] Yuan J, Dong X, Yap J, et al. The MAPK and AMPK signalings: interplay and implication in targeted cancer therapy[J]. Journal of Hematology & Oncology, 2020, 13(1): 113. |