[1] Cook R J, Bruckart W L, Coulson J R, et al. Safety of microorganisms intended for pest and plant disease control: a framework for scientific evaluation[J]. Biological Control, 1996, 7(3): 333-351.
[2] 梅汝鸿, 徐维敏. 植物微生态学[M]. 北京: 中国农业出版社, 1998.
[3] 唐丽娟, 纪兆林, 徐敬友, 等. 地衣芽孢杆菌W10对灰葡萄孢的抑制作用及其抗菌物质[J]. 中国生物防治, 2005, 21(3): 203-205.
[4] 林福呈, 李德葆. 枯草芽孢杆菌Bacillus subtilis S9对植物病原真菌的溶菌作用[J]. 植物病理学报, 2003, 33(2): 174-177.
[5] Ongena M, Jacques P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol[J]. Trends in Microbiology, 2008, 16(3): 115-125.
[6] Yu G Y, Sinclair J B, Hartman G L, et al. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani[J]. Soil Biology and Biochemisty, 2002, 34(4): 955-963.
[7] Reva O N, Dixeliu C, Meijer J, et al. Taxonomic characterization and plant colonizing abilities of some bacteria related to Baicllus amyloliquefaciens and Bacillus subtilis[J]. FEMS Microbiology Ecology, 2004, 48(2): 249-259.
[8] 刘国红, 林乃铨, 林营志, 等. 芽孢杆菌分类与应用研究进展[J]. 福建农业学报, 2008, 23(1): 92-99.
[9] 陈蕾, 王倩, 张惠军. 芽孢杆菌最新分类研究进展[J]. 河南化工, 2011, 28(3): 14-18.
[10] 唐容容, 杨文革, 胡永红, 等. 蜡样芽孢杆菌CGMCC4348菌株防治番茄灰霉病的效果及机理研究[J]. 湖南农业科学, 2013, 52(8): 1817-1820.
[11] 张荣胜, 戴秀华, 陈志谊. 解淀粉芽孢杆菌Lx-11对水稻细菌性条斑病的防治效果[J]. 江苏农业科学, 2014, 42(10): 115-116.
[12] 陈思宇, 王晓宇, 陈志谊. 水稻纹枯病菌拮抗细菌的筛选及鉴定[J]. 植物保护学报, 2013, 40(3): 385-391.
[13] 黄玲玲, 裘纪莹, 唐琳, 等. 解淀粉芽胞杆菌NCPSJ7对采后苹果轮纹病的生物防治作用[J]. 中国食物与营养, 2015, 21(2): 20-24.
[14] 陈志谊, 苗东华, 许志刚. 水稻纹枯病拮抗细菌的评价与利用[J]. 水稻科学, 2000, 14(2): 58-63.
[15] 陈志谊, 刘荣, 刘永锋. 水稻纹枯病拮抗细菌B-916的选育[J]. 中国生物防治学报, 2003, 19(1): 15-18.
[16] 张学君, 凌宏通, 李洪连, 等. 生物农药麦丰宁B3对小麦纹枯病的抑制作用[J]. 植物病理学报, 1994, 24(4): 361-366.
[17] 林东, 徐庆, 刘艺舟, 等. 枯草芽孢杆菌S0113分泌蛋白的抑菌作用及抗菌蛋白的分离纯化[J]. 农业生物技术学报, 2001, 9(1): 77-80.
[18] 胡剑, 赵永歧, 王岳五, 等. 枯草杆菌Bs-98分泌的抗真菌蛋白的分离纯化及其部分性质的研究[J]. 微生物学通报, 1997, 24(1): 3-6.
[19] 顾真荣, 吴畏, 高新华, 等. 枯草芽孢杆菌G3防治植病盆栽试验[J]. 上海农业学报, 2002, 18(1): 77-80.
[20] 王雅平, 刘伊平, 潘乃穟, 等. 枯草芽孢杆菌TG26防病增产效应的研究[J]. 生物防治通报, 1993, 9(2): 63-68.
[21] 张荣胜, 刘永锋, 陈志谊. 水稻细菌性条斑病菌拮抗细菌的筛选、评价与应用研究[J]. 中国生物防治学报, 2011, 27(4): 510-514.
[22] 王奕文, 胡文兵, 许玲, 等. 甜瓜果实表面生防芽孢杆菌的类群与鉴别[J]. 植物病理学报, 2008, 38(3): 317-324.
[23] 陈士云, 杨宝玉, 高梅影. 1株抑制油菜核盘菌菌核形成的解淀粉芽孢杆菌[J]. 应用与环境生物学报, 2005, 11(3): 373-376.
[24] 欧雄常, 柳凤, 詹儒林. 拮抗辣椒疫病菌的红树内生细菌筛选及RS261菌株鉴定[J]. 微生物学通报, 2009, 36(2): 175-180.
[25] Leong J. Siderophores: their biochemistry and possible role in the biocontrol of plant pathogens[J]. Annual Review of Phytopathology, 1986, 24: 187-209.
[26] Shoda M. Bacterial control of plant diseases[J]. Journal of Bioscience and Bioengineering, 2000, 89(6): 515-521.
[27] Weisbeek P, Ogeshi A, Kobayashi K, et al. plant growth-promoting rhizobacteria present status and future prospects[C]//Proceeding of the 4th International Workshop on Plant Growth-promoting Rhizobacteria, Japan-OECD Joint Workshop Sapporo Japan, 1997, 10(5): 102-106.
[28] Bacon C W, Yates I E, Hinton D M, et al. Biological control of Fusarium moniliforme in maize[J]. Environmental Health Perspectives, 2001, 109(S2): 325-332.
[29] 黎起秦, 叶云峰, 王涛, 等. 内生枯草芽孢杆菌B47菌株入侵番茄的途径及其定殖部位[J]. 中国生物防治, 2008, 24(2): 133-137.
[30] Bais H P, Fall R, Vivanco J M. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production[J]. Plant Physiology, 2004, 134(1): 307-319.
[31] Zeriouh H, de Vicente A, Pérez-García A, et al. Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity[J]. Environmental Microbiology, 2014, 16(7): 2196-2211.
[32] Chen Y, Cao S, Chai Y, et al. A Bacillus subtilis sensor kinase involved in triggering biofilm formation on the roots of tomato plants[J]. Molecular Microbiology, 2012, 85(3): 418-430.
[33] Beauregard P B, Chai Y, Vlamakis H, et al. Bacillus subtilis biofilm induction by plant polysaccharides[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(17): 1621-1630.
[34] Hansen H, Bjelland A M, Ronessen M, et al. LitR is a repressor of syp genes and has a temperature-sensitive regulatory effect on biofilm formation and colony morphology in vibrio (Aliivibrio) salmonicida[J]. Applied and Environmental Microbiology, 2014, 80(17): 5530-5541.
[35] Houry A, Briandet R, Aymerich S, et al. Involvement of motility and flagella in Bacillus cereus biofilm formation[J]. Microbiology, 2010, 156(4): 1009-1018.
[36] Kolodkin-Gal I, Cao S, Chai L, et al. A self-produced trigger for biofilm disassembly that targets exopolysaccharide[J]. Cell, 2012, 149(3): 684-692.
[37] Romero D, Aguilar C, Losick R, et al. Amyloid fibers provide structural integrity to Bacillus subtilis biofilms[J]. PNAS, 2010, 107(5): 22330-22344.
[38] Johnson F H, Campbell D H. The retardation of protein denaturation by hydrostatic pressure[J]. Journal of Cellular and Comparative Physiology, 1945, 26(1): 43-46.
[39] 高学文, 姚仕义, Huong P, 等. 基因工程枯草芽孢杆菌GEB3产生的脂肽类抗生素及生物活性的研究[J]. 中国农业科学, 2003, 36(12): 1496-1501.
[40] Arima K, Kakinuma A, Tamura G. Surfactin, a crystalline peptidelipid surfactant produced by Bacillus stubilis: isolation, characterization and its inhibition of fibrin clot formation[J]. Biochemical and Biophysical Research Communication, 1968, 31(3): 488-494.
[41] Sheppard J D, Jumarie C, Cooper D G, et al. Ionic channels induced by surfactin in planar lipid bilayer membranes[J]. Biochimica Biophysica Acta, 1991, 1064(1): 13-23.
[42] Branda S S, Gonzalez-Pastor J E, Ben-Yehuda S, et al. Fruiting body formation by Bacillus subtilis[J]. PNAS, 2001, 98(20): 11621-11626.
[43] Bais H P, Fall R, Vivanco J M. Biocontrol of Bacillus subtilis against infection of arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production[J]. Plant Physiology, 2004, 134(1): 307-319.
[44] Julkowska D, Obuchowski M, Holland B I, et al. Comparative analysis of the development of swarming communities of Bacillus subtilis 168 and a natural wild type: critical effects of surfactin and the composition of the medium[J]. Journal of Bacteriology, 2005, 187(1): 65-76.
[45] Moyne A L, Shelby R, Cleveland T E, et al. Bacillomycin D: an iturin with antifungal activity against Aspergillus flavus[J]. Journal Applied Microbiology, 2001, 90(4): 622-629.
[46] Stein T, Heinmann S, Dusterhus S. Expression and functional analysis of subtilin immunity genes spaIFEG in the subtilin-sensitive host Bacillus subtilis MO 1099[J]. The Journal of Bacteriology, 2005, 187(3): 822-828.
[47] 罗楚平, 王晓宇, 陈志谊, 等. 枯草芽孢杆菌Bs916中脂肽抗生素Bacillomycin L的操纵子结构及生物活性[J]. 中国农业科学, 2010, 43(22): 4624-4634.
[48] Phae C G, Shoda M, Kubota H. Suppressive effect of Bacillus subtilis and it's products on phytopathogenic microorganisms[J]. Journal of Fermentation and Bioengineering, 1990, 69(1): 1-7.
[49] Hiradate S, Yoshida S, Sugie H, et al. Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2[J]. Phytochemistry, 2002, 61(6): 693-698.
[50] Yu G Y, Sinclair J B, Hartman G L, et al. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani[J]. Soil Biology and Biochemistry, 2002, 34(7): 955-963.
[51] Tschenj S M. Control of Rizoctonia soanli by Bacillus subtilis[J]. Transactions of the Mycological Society Japan, 1987, 28: 483-493.
[52] Vanittanakom N, Loeffler W, Koch U. Fengycin-a novel anti-fungal lipopeptide antibiotic produced by Bacillus subtilis F2923[J]. The Journal Antibiotics, 1986, 39(7): 888-901.
[53] Ongena M, Adam A, Jourdan E, et al. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants[J]. Environmental Microbiology, 2007, 9(4): 1084-1090.
[54] Hofemeister J, Conrad B, Adler B, et al. Genetic analysis of the biosynthesis of non-ribosomal peptide- and polyketide-like antibiotics, iron uptake and biofilm formation by Bacillus subtilis A1/3[J]. Molecular Genet Genomics, 2004, 272(4): 363-378.
[55] Chen X H, Vater J, Piel J, et al. Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB42[J]. Journal of Bacteriology, 2006, 188(11): 4024-4036.
[56] Chen X H, Scholz R, Borriss M, et al. Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease[J]. Journal of Biotechnology, 2009, 140(1-2): 38-44.
[57] Nakano M M, Zuber P. Molecular biology of antibiotic production in Bacillus[J]. Critical Reviews in Biotechnology, 1990, 10(3): 223-240.
[58] Kleinkauf H, Dohren H. Noribosomal biosynthesis of peptide antibiotics[J]. European Journal of Biochemistry, 1990, 192(1): 1-15.
[59] Fujiu M, Sawairi S, Shimada H, et al. Azoxybacillin, a novel antifungal agent produced by Bacillus cereus NR2991: production, isolation and structure elucidation[J]. Journal of Antibiotics, 1994, 47: 833-835.
[60] Zheng G, Slavik M F. Isolation, partial purification and characterization of a bacteriocin produced by a newly isolated Bacillus subtilis strain[J]. Letter in Applied Bacteriology, 1999, 28(5): 363-367.
[61] 顾真荣, 马承铸, 韩长安. 产几丁质酶芽孢杆菌的筛选鉴定和酶活力测定[J]. 上海农业学报, 2001, 17(3): 92-96.
[62] Stover A G, Driks A. Regulation of synthesis of the Bacillus subtilis transition-phase, spore-associated antibacterial protein TasA[J]. Journal of Bacteriology, 1999, 181(17): 5476-5481.
[63] Serrano M, Zilhao R, Ricca E, et al. A Bacillus subtilis secreted protein with a role in endospore coat assembly and function[J]. Journal of Bacteriology, 1999, 181(12): 3632-3643.
[64] 唐丽娟, 纪兆林, 徐敬友, 等. 地衣芽孢杆菌W10对灰葡萄孢的抑制作用及其抗菌物质[J]. 中国生物防治, 2005, 21(3): 203-205.
[65] Liu Y, Chen Z, Ng T, et al. Bacisubin, an antifungal protein with ribonuclease and hemagglutinating activities from Bacillus subtilis strain B-916[J]. Peptides, 2007, 28(3): 553-559.
[66] 林福呈, 李德葆. 枯草芽孢杆菌(Bacillus subtilis) S9对植物病原真菌的溶菌作用[J]. 植物病理学报, 2003, 33(2): 174-177.
[67] 刘邮洲. 番茄枯萎病和梨论文病生防菌控病机制研究及几丁质酶基因的克隆与表达[D]. 南京: 南京农业大学, 2011.
[68] Ukness S, Winter A M, Delaney T. Biological induction of systemic acquired resistance in Arabidopsis[J]. Molecular Plant-Microbe Interactions, 1993, 6: 692-698.
[69] Pieterse C M, van Wees S C, van Pelt J A, et al. A novel signaling pathway controlling induced systemic resistance in Arabidopsis[J]. The Plant Cell, 1998, 10(9): 1571-1580.
[70] Conrath U, Pieterse C M J, Mauch-Mani B. Priming in plant-pathogen interactions[J]. Trends in Plant Science, 2002, 7(5): 210-216.
[71] van der Ent S, van Wees S C, Pieterse C M. Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes[J]. Photochemistry, 2009, 70(13-14): 1581-1588.
[72] Niu D, Liu H, Jiang C, et al. The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate-and jasmonate/ethylene-dependent signaling pathways[J]. Molecular Plant-Microbe Interactions, 2011, 24(5): 533-542.
[73] Ongena M, Jacques P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol[J]. Trends in Microbiology, 2008, 16(3): 115-1125.
[74] Jourdan E, Henry G, Duby F, et al. Insights into the defense-related events occuring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis[J]. Molecular Plant-Microbe Interactions, 2009, 22(4): 456-468.
[75] Ahimou F, Jacques P, Deleu M. Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity[J]. Enzyme and Microbial Technology, 2000, 27(10): 749-754.
[76] Henry G, Deleu M, Thonart P, et al. The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immune-related defence responses[J]. Cell Microbiology, 2011, 13(11): 1824-1837.
[77] Ogura M, Yoshikawa H, Chibazakura T. Regulation of the response regulator gene degU through the binding of SinR/SlrR and exclusion of SinR/SlrR by DegU in Bacillus subtilis[J]. Journal of Bacteriology, 2014, 196(4): 873-881.
[78] Zaman M, Toth I. Immunostimulation by synthetic lipopeptide-based vaccine candidates: structure-activity relationships[J]. Frontiers in Immunology, 2013, 4(1): 1-12.
[79] Benizri E, Baudoin E, Guckert A. Root colonization by inoculated plant growth-promoting rhizobacteria[J]. Biocontrol Science and Technology, 2001, 11(5): 557-574.
[80] Bloemberg G V, Lugtenberg B J. Molecular basis of plant growth promotion and biocontrol by rhizobacteria[J]. Current Opinion Plant Biology, 2001, 4(4): 343-350.
[81] 郝晓娟, 刘波, 谢关林. 短小芽孢杆菌JK-2菌株对番茄枯萎病的抑菌作用及其小区防效[J]. 中国生物防治, 2007, 23(3): 233-236.
[82] van Rij E, Wesselink M, Chin-A-Woeng T, et al. Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chlororaphis PCL1391[J]. Molecular Plant-Microbe Interactions, 2004, 17(5): 557-566.
[83] Raupach G S, Kloepper J W. Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens[J]. Phytopathology, 1998, 88(11): 1158-1164.
[84] 陈志谊, 刘邮洲, 刘永峰, 等. 拮抗细菌菌株之间的互作关系及其对生物防治效果的影响[J]. 植物病理学报, 2005, 35(6): 539-544.
[85] 陈志谊, 刘永锋, 陆凡. 井冈霉素和生防菌Bs-916协同控病作用及增效机理[J]. 植物保护学报, 2003, 30(4): 429-434.
[86] Liu Y, Chen Z, Wang K, et al. Enhancing bioefficacy of Bacillus subtilis with sodium bicarbonate for the control of ring rot in pear during storage[J]. Biological Control, 2011, 57(2): 110-117.
[87] 张荣胜, 戴秀华, 陈志谊. 解淀粉芽孢杆菌Lx-11对水稻细菌性条斑病的防治效果[J]. 江苏农业科学, 2014, 42(10): 115-116.
[88] 刘邮洲, 陈志谊, 傅锡敏, 等. 喷雾压力、药液流量和工作风速对生防微生物在不同作物上定殖的影响[J]. 江苏农业学报, 2008, 24(3): 267-273.
[89] 刘邮洲, 陈志谊, 傅锡敏, 等. 生物杀菌剂纹曲宁田间高效使用技术研究[J]. 江苏农业科学, 2006, 34(3): 76-79.
[90] 王春, 汪坤, 崔志峰. 芽孢杆菌活体微生物农药研究现状与应用[J]. 浙江农业科学, 2013, (7): 830-834.
[91] 张荣胜, 陈志谊, 戴秀华, 等. 解淀粉芽胞杆菌Lx-11发酵培养和液体菌剂贮存研究[J]. 中国生物防治学报, 2014, 30(5): 672-677.
[92] 顾中言, 唐为爱, 陈志谊, 等. 表面活性剂对生物农药纹曲宁抑菌活性和防病效果的影响[J]. 江苏农业学报, 2005, 21(3): 162-166.
[93] 朱昌雄, 丁振华, 蒋细良等. 微生物农药剂型研究发展趋势[J]. 现代化工, 2003, 23(3): 4-8.
[94] 王益民. 几丁质酶基因和β-1,3-葡聚糖酶基因的克隆及双价基因在枯草芽孢杆菌B-908中的表达[J]. 植物病理学报, 1998, 28: 97-98.
[95] 高学文, 姚仕义, Huong P, 等. 基因工程枯草芽孢杆菌GEB3产生的脂肽类抗生素及生物活性的研究[J]. 中国农业科学, 2003, 36(12): 1496-1501.
[96] 陈志谊, 刘永锋, 陆凡. 水稻纹枯病生防菌Bs-916产业化生产关键技术[J]. 植物保护学报, 2004, 31(3): 230-234. |