[1] Lewis K. Riddle of biofilm resistance[J]. Antimicrob Agents Chemother, 2001, 45(4):999-1007. [2] Choudhary D K, Johri B N. Interactions of Bacillus spp. and plants-with special reference to induced systemic resistance (ISR)[J]. Microbiological Research, 2009, 164(5):493-513. [3] Chen Y, Yan F, Chai Y, et al. Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation[J]. Environmental Microbiology, 2013, 15(3):848-864. [4] Gao S, Wu H, Wang W, et al. Efficient colonization and harpins mediated enhancement in growth and biocontrol of wilt disease in tomato by Bacillus subtilis[J]. Letters in Applied Microbiology, 2013, 57(6):526-533. [5] Agrios G N. Plant Pathology (5th Edition)[M]. Burlington:Elsevier Academic Press, 2005. [6] Yuliar, Nion Y A, Toyota K. Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum[J]. Microbes and Environments, 2015, 30(1):1-11. [7] Fu Y, Yu Z, Liu S, et al. C-di-GMP regulates various phenotypes and insecticidal activity of Gram-positive Bacillus thuringiensis[J]. Frontiers in Microbiology, 2018(9):45. [8] 黄天培, 张君, 戴瑞卿, 等. 5个杀虫调控基因对苏云金芽胞杆菌407解毒Cr(Ⅵ)的影响[J]. 应用与环境生物学报, 2014, 20(4):785-790. [9] 彭琦, 周子珊, 张杰. 苏云金芽胞杆菌杀虫晶体蛋白研究进展[J]. 中国生物防治学报, 2015, 31(5):712-722. [10] Huang T, Lin Q, Qian X, et al. Nematicidal activity of Cry1Ea11 from Bacillus thuringiensis BRC-XQ12 against the pine wood nematode (Bursaphelenchus xylophilus)[J]. Phytopathology, 2017, 108(1):44-51. [11] 戴瑞卿. 苏云金芽胞杆菌XL6生物被膜调控基因初步解析及工程菌构建[D]. 福州:福建农林大学, 2016. [12] Pan X, Xu Z, Li L, et al. Adsorption of insecticidal crystal protein Cry11Aa onto nano-Mg(OH)2:effects on bioactivity and anti-ultraviolet ability[J]. Journal of Agricultural and Food Chemistry, 2017, 65(43):9428-9434. [13] Costerton J W, Stewart P S, Greenberg E P. Bacterial biofilms:a common cause of persistent infections[J]. Science, 1999, 284(5418):1318-1322. [14] Davey M E, O'Toole G A. Microbial biofilms:from ecology to molecular genetics[J]. Microbiology and Molecular Biology Reviews, 2000, 64(4):847-867. [15] 张连波. 铜绿假单胞菌生物被膜研究进展[J]. 中国实验诊断学, 2009, 13(1):137-140. [16] Donlan R M, Costerton J W. Biofilms:survival mechanisms of clinically relevant microorganisms[J]. Clinical Microbiology Reviews, 2002, 15(2):167. [17] Ryder C, Byrd M, Wozniak D J. Role of polysaccharides in Pseudomonas aeruginosa biofilm development[J]. Current Opinion in Microbiology, 2007, 10(6):644-648. [18] Flemming H C, Wingender J, Moritz R, et al. Physico-chemical properties of biofilms[M]//Biofilms:Recent Advances in Their Study and Control. Amsterdam:Harwood Academic Publishers, 2000, 19-34. [19] 屈常林, 高洪, 赵宝洪, 等. 细菌生物被膜与抗生素耐药机制研究进展[J]. 动物医学进展, 2008, 29(3):86-90. [20] Taff H T, Nett J E, Andes D R. Comparative analysis of Candida biofilm quantitation assays[J]. Medical Mycology, 2012, 50(2):214. [21] Hassan A, Usman J, Kaleem F, et al. Evaluation of different detection methods of biofilm formation in the clinical isolates[J]. Brazilian Journal of Infectious Diseases, 2011, 15(4):305. [22] 蔡少华, 张进川, 钱桂生, 等. 机械通气病人气管内导管生物被膜的结构和病原学特征[J]. 中国抗生素杂志, 2001, 26(3):198-203. [23] Roilides E, Simitsopoulou M, Katragkou A, et al. How biofilms evade host defenses[J]. Microbiology Spectrum, 2015, 3(3):doi:10.1128/microbiolspec. MB-0012-2014. [24] Lucena W A, Pelegrini P B, Martinsdesa D, et al. Molecular approaches to improve the insecticidal activity of Bacillus thuringiensis Cry toxins[J]. Toxins, 2014, 6(8):2393-2423. [25] He X, Sun Z, He K, et al. Biopolymer microencapsulations of Bacillus thuringiensis crystal preparations for increased stability and resistance to environmental stress[J]. Applied Microbiology and Biotechnology, 2017, 101(7):2779. [26] Yang W, Yan H, Zhang J, et al. Inhibition of biofilm formation by Cd 2+ on Bacillus subtilis 1JN2 depressed its biocontrol efficiency against Ralstonia wilt on tomato[J]. Microbiological Research, 2018:doi:10.1016/j.micres.2018.06.002. [27] Bais H P, Fall R, Vivanco J M. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production[J]. Plant Physiology, 2004, 134(1):307-319. [28] Elasri M O, Miller R V. Study of the response of a biofilm bacterial community to UV radiation[J]. Applied and Environmental Microbiology, 1999, 65(5):2025. [29] Bernbom N, Vogel B F, Gram L. Listeria monocytogenes survival of UV-C radiation is enhanced by presence of sodium chloride, organic food material and by bacterial biofilm formation[J]. International Journal of Food Microbiology, 2011, 147(1):69-73. [30] Harris G D, Adams V D, Sorensen D L, et al. Ultraviolet inactivation of selected bacteria and viruses with photoreactivation of the bacteria[J]. Water Research, 1987, 21(6):687-692. [31] Liu Y T, Sui M J, Ji D D, et al. Protection from ultraviolet irradiation by melanin of mosquitocidal activity of Bacillus thuringiensis var. israelensis[J]. Journal of Invertebrate Pathology, 1993, 62(2):131-136. [32] Zhang J T, Yan J P, Zheng D S, et al. Expression of mel gene improves the UV resistance of Bacillus thuringiensis[J]. Journal of Applied Microbiology, 2008, 105(1):151-157. [33] Sansinenea E, Salazar F, Ramirez M, et al. An ultra-violet tolerant wild-type strain of melanin-producing Bacillus thuringiensis[J]. Jundishapur Journal of Microbiology, 2015, 8(7):e20910. [34] Mckenzie G. Development and field performance of a broad-spectrum nonviable asporogenic recombinant strain of Bacillus thuringiensis with greater potency and UV resistance[J]. Applied and Environmental Microbiology, 1999, 65(9):4032. [35] Chen X, Gao T, Peng Q, et al. The novel cell wall hydrolase CwlC from Bacillus thuringiensis is essential for mother cell lysis[J]. Applied and Environmental Microbiology, 2018, 84(7):e02640-17. [36] Sun F, Qu F, Ling Y, et al. Biofilm-associated infections:antibiotic resistance and novel therapeutic strategies[J]. Future Microbiology, 2013, 8(7):877-886. [37] Høiby N, Bjarnsholt T, Givskov M, et al. Antibiotic resistance of bacterial biofilms[J]. International Journal of Antimicrobial Agents, 2010, 35(3):83-88. [38] Marshall K C. Biofilms:An overview of bactrial adhesion, activity, and control at surfaces[J]. ASM News, 1992, 58:202-208. [39] Ceri H, Olson M E, Stremick C, et al. The calgary biofilm device:new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms[J]. Journal of Clinical Microbiology, 1999, 37(6):1771-1776. [40] Limoli D H, Jones C J, Wozniak D J. Bacterial extracellular polysaccharides in biofilm formation and function[J]. Microbiology Spectrum, 2015, 3(3):doi:10.1128/micrabiolspec.MB-0011-2014. [41] Flemming H C, Wingender J. The biofilm matrix[J]. Nature Reviews Microbiology, 2010, 8(9):623-633. [42] Murofushi Y, Villena J, Morie K, et al. The toll-like receptor family protein RP105/MD1 complex is involved in the immunoregulatory effect of exopolysaccharides from Lactobacillus plantarum N14[J]. Molecular Immunology, 2015, 64(1):63-75. [43] Lin M H, Yang Y L, Chen Y P, et al. A novel exopolysaccharide from the biofilm of Thermus aquaticus YT-1 induces the immune response through toll-like receptor 2[J]. Journal of Biological Chemistry, 2011, 286(20):17736. [44] Watters C, Fleming D, Bishop D, et al. Host responses to biofilm[J]. Progress in Molecular Biology and Translational Science, 2016, 142:193. [45] Muthukrishnan G, Quinn G A, Lamers R P, et al. Exoproteome of Staphylococcus aureus reveals putative determinants of nasal carriage[J]. Journal of Proteome Research, 2011, 10(4):2064-2078. [46] Gil C, Solano C, Burgui S, et al. Biofilm matrix exoproteins induce a protective immune response against Staphylococcus aureus biofilm infection[J]. Infection and Immunity, 2014, 82(3):1017-1029. [47] Majed R, Faille C, Kallassy M, et al. Bacillus cereus biofilms-same, only different[J]. Frontiers in Microbiology, 2016, 7(745):1054. [48] Elkhoury N, Majed R, Perchat S, et al. Spatio-temporal evolution of sporulation in Bacillus thuringiensis biofilm[J]. Frontiers in Microbiology, 2016, 7(1373). [49] Bravo A, Agaisse H, Salamitou S, et al. Analysis of cry1Aa expression in sigE and sigK mutants of Bacillus thuringiensis[J]. Molecular and General Genetics MGG, 1996, 250(6):734-741. [50] Adams L F, Brown K L, Whiteley H R. Molecular cloning and characterization of two genes encoding sigma factors that direct transcription from a Bacillus thuringiensis crystal protein gene promoter[J]. Journal of Bacteriology, 1991, 173(12):3846. [51] Michiels K W, Croes C L, Vanderleyden J. Two different modes of attachment of Azospirillum brasilense Sp7 to wheat roots[J]. Journal of General Microbiology, 1991, 137(9):2241-2246. [52] Vidalquist J C, Rogers H J, Mahenthiralingam E, et al. Bacillus thuringiensis colonises plant roots in a phylogeny-dependent manner[J]. FEMS Microbiology Ecology, 2013, 86(3):474-489. [53] Wu H, Wang S, Qiao J, et al. Expression of HpaGXoocprotein in Bacillus subtilis and its biological functions[J]. Journal of Microbiology and Biotechnology, 2009, 19(2):194-203. [54] Morgan J A W, Bending G D, White P J. Biological costs and benefits to plant-microbe interactions in the rhizosphere[J]. Journal of Experimental Botany, 2005, 56(417):1729-1739. [55] Rajeev L, Luning E G, Altenburg S, et al. Identification of a cyclic-di-GMP-modulating response regulator that impacts biofilm formation in a model sulfate reducing bacterium[J]. Frontiers in Microbiology, 2014, 5:382-382. [56] Lori C, Ozaki S, Steiner S, et al. Cyclic-di-GMP acts as a cell cycle oscillator to drive chromosome replication[J]. Nature, 2015, 523(7559):236. [57] Sondermann H, Shikuma N J, Yildiz F H. You've come a long way:c-di-GMP signaling[J]. Current Opinion in Microbiology, 2012, 15(2):140-146. [58] Lee V, Matewish J, Kessler J, et al. A cyclic-di-GMP receptor required for bacterial exopolysaccharide production[J]. Molecular Microbiology, 2007, 65(6):1474-1484. [59] Abel S, Chien P, Wassmann P, et al. Regulatory cohesion of cell cycle and cell differentiation through interlinked phosphorylation and second messenger networks[J]. Molecular Cell, 2011, 43(4):550-560. [60] Sudarsan N, Lee E R, Weinberg Z, et al. Riboswitches in eubacteria sense the second messenger cyclic-di-GMP[J]. Science, 2008, 321(5887):411-413. [61] Fagerlund A, Smith V, Røhr Å K, et al. Cyclic diguanylate regulation of Bacillus cereus group biofilm formation[J]. Molecular Microbiology, 2016, 101(3):471-494. [62] Chen Y, Chai Y, Guo J H, et al. Evidence for cyclic Di-GMP-mediated signaling in Bacillus subtilis[J]. Journal of Bacteriology, 2012, 194(18):5080-5090. [63] Tang Q, Yin K, Qian H, et al. Cyclic-di-GMP contributes to adaption and virulence of Bacillus thuringiensis through a riboswitch-regulated collagen adhesion protein[J]. Scientific Reports, 2016, 6:28807. [64] Mukherjee S, Babitzke P, Kearns D B. FliW and FliS function independently to control cytoplasmic flagellin levels in Bacillus subtilis[J]. Journal of Bacteriology, 2013, 195(2):297-306. [65] Gélis-Jeanvoine S, Canette A, Gohar M, et al. Genetic and functional analyses of krs, a locus encoding kurstakin, a lipopeptide produced by Bacillus thuringiensis[J]. Research in Microbiology, 2016, 168(4):356-368. [66] Li X, Yang H, Zhang D, et al. Overexpression of specific proton motive force-dependent transporters facilitate the export of surfactin in Bacillus subtilis[J]. Journal of Industrial Microbiology and Biotechnology, 2015, 42(1):93. [67] Fagerlund A, Dubois T, OA Ø, et al. SinR controls enterotoxin expression in Bacillus thuringiensis biofilms[J]. Plos One, 2014, 9(1):e87532. [68] Ogura M. Post-transcriptionally generated cell heterogeneity regulates biofilm formation in Bacillus subtilis[J]. Genes to Cells, 2016, 21(4):335-349. [69] Dubois T, Faegri K, Perchat S, et al. Necrotrophism is a quorum-sensing-regulated lifestyle in Bacillus thuringiensis[J]. Plos Pathogens, 2012, 8(4):e1002629. [70] Dubois T, Perchat S, Verplaetse E, et al. Activity of the Bacillus thuringiensis NprR-NprX cell-cell communication system is co-ordinated to the physiological stage through a complex transcriptional regulation[J]. Molecular Microbiology, 2013, 88(1):48-63. [71] Agaisse H, Gominet O O, Kolsto A, et al. PlcR is a pleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis[J]. Molecular Microbiology, 1999, 32(5):1043. [72] Okstad O A, Gominet M, Purnelle B, et al. Sequence analysis of three Bacillus cereus loci carrying PIcR-regulated genes encoding degradative enzymes and enterotoxin[J]. Microbiology, 1999, 145(11):3129. [73] Declerck N, Bouillaut L, Chaix D, et al. Structure of PlcR:insights into virulence regulation and evolution of quorum sensing in Gram-positive bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(47):18490-18495. [74] Rocha J, Flores V, Cabrera R, et al. Evolution and some functions of the NprR-NprRB quorum-sensing system in the Bacillus cereus group[J]. Applied Microbiology and Biotechnology, 2012, 94(4):1069-1078. [75] Verplaetse E, Slamti L, Gohar M, et al. Cell differentiation in a Bacillus thuringiensis population during planktonic growth, biofilm formation, and host infection[J]. Mbio, 2015, 6(3):00138-00143. [76] 蒋宝莹, 裘娟萍, 孙东昌. 芽胞杆菌基因敲除技术及其在工农业应用中的研究进展[J]. 食品与发酵工业, 2016, 42(5):264-271. [77] Zheng C, Ma Y, Wang X, et al. Functional analysis of the sporulation-specific diadenylate cyclase CdaS in Bacillus thuringiensis[J]. Frontiers in Microbiology, 2015, 6(908):908. [78] 姚俊敏. 苏云金芽胞杆菌XL6~-候选生物被膜调控基因00940序列分析及基因敲除突变体构建[J]. 农业生物技术学报, 2018, 26(8):1401-1409. [79] Kamoun F, Ben Fguira I, Tounsi A, et al. Generation of Mini-Tn10 transposon insertion mutant library of Bacillus thuringiensis for the investigation of genes required for its bacteriocin production[J]. FEMS Microbiology Letters, 2009, 294(2):141-149. [80] Bishop A H, Rachwal P A, Vaid A. Identification of genes required by Bacillus thuringiensis for survival in soil by transposon-directed insertion site sequencing[J]. Current Microbiology, 2014, 68(4):477-485. [81] Zhu L, Peng D, Wang Y, et al. Genomic and transcriptomic insights into the efficient entomopathogenicity of Bacillus thuringiensis[J]. Scientific Reports, 2015, 5:14129. [82] Gomis C J, Ana S R, Juan F. A genomic and proteomic approach to identify and quantify the expressed Bacillus thuringiensis proteins in the supernatant and parasporal crystal[J]. Toxins, 2018, 10(5):193. [83] Quan M, Xie J, Liu X, et al. Comparative analysis of genomics and proteomics in the new isolated Bacillus thuringiensis X022 revealed the metabolic regulation mechanism of carbon flux following Cu(2+) Treatment[J]. Frontiers in Microbiology, 2016, 7(75):792. [84] De l F-N C, Lu T K. CRISPR-Cas9 technology:applications in genome engineering, development of sequence-specific antimicrobials, and future prospects[J]. Integrative Biology, 2017, 9(2):109-122. [85] Kang S, Kim J, Hur J K, et al. CRISPR-based genome editing of clinically important Escherichia coli SE15 isolated from indwelling urinary catheters of patients[J]. Journal of Medical Microbiology, 2017, 66(1):18-25. [86] Na D, Yoo S M, Chung H, et al. Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs[J]. Nature Biotechnology, 2013, 31(2):170-174. [87] Murphy K, Park A J, Hao Y, et al. Influence of O polysaccharides on biofilm development and outer membrane vesicle biogenesis in Pseudomonas aeruginosa PAO1[J]. Journal of Bacteriology, 2014, 196(7):1306-1317. [88] Wang H H, Isaacs F J, Carr P A, et al. Programming cells by multiplex genome engineering and accelerated evolution[J]. Nature, 2009, 460(7257):894-898. [89] Warner J R, Reeder P J, Karimpourfard A, et al. Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides[J]. Nature Biotechnology, 2010, 28(8):856-862. |