[1] 周芳. 山西省褐腐病菌种群结构及致病性研究[D]. 晋中:山西农业大学, 2015. [2] 凡先芳, 王宝刚, 曾凯芳. 采后果实褐腐病防治技术研究进展[J]. 食品工业科技, 2015, 36(12):385-389. [3] 纪兆林, 蒋长根, 戴慧俊, 等. 不同杀菌剂对桃褐腐病菌的毒力测定[J]. 中国南方果树, 2013, 42(5):95-97. [4] 张殿朋, 韩雪梅, 卢彩鸽, 等. 利用葡萄籽油防治桃子采后褐腐病的研究[J]. 河南农业科学, 2013, 42(5):105-109. [5] Halami P M. Sublichenin, a new subtilin-like lantibiotics of probiotic bacterium Bacillus licheniformis MCC 2512T with antibacterial activity[J]. Microbial Pathogenesis, 2019, 128:139-146. [6] 郑雅心. 萎缩芽胞杆菌SF1拮抗蛋白生防功能研究[D]. 呼和浩特:内蒙古大学, 2019. [7] Jin Q, Jiang Q, Zhao L, et al. Complete genome sequence of, Bacillus velezensis, S3-1, a potential biological pesticide with plant pathogen inhibiting and plant promoting capabilities[J]. Journal of Biotechnology, 2017, 259:199-203. [8] Zhou M S, Li P Z, Wu S Y, et al. Bacillus subtilis CF-3 volatile organic compounds inhibit monilinia fructicola growth in peach fruit[J]. Front Microbiol, 2019, 10:1804. [9] Syed-Ab-Rahman S F, Carvalhais L C, Chua E T, et al. Soil bacterial diffusible and volatile organic compounds inhibit Phytophthora capsici and promote plant growth[J]. Science of the Total Environment, 2019, 692:267-280. [10] Song G C, Ryu C M. Evidence for volatile memory in plants:boosting defence priming through the recurrent application of plant volatiles[J]. Molecules and Cells, 2018, 41(8):724-732. [11] Lu H, Xu S, Zhang W, et al. Nematicidal activity of trans-2-Hexenal against southern root-knot nematode (Meloidogyne incognita) on tomato plants[J]. Journal of Agricultural and Food Chemistry, 2017, 65(3):544-550. [12] 陈奕鹏, 杨扬, 桑建伟, 等. 拮抗内生芽胞杆菌BEB17分离鉴定及其挥发性物质抑菌活性分析[J]. 植物病理学报, 2018, 48(4):537-546. [13] Tang L, Mo J, Guo T, et al. In vitro antifungal activity of dimethyl trisulfide against Colletotrichum gloeosporioides from mango[J]. World Journal of Microbiology and Biotechnology, 2019, 36(1):4. [14] 殷晓慧, 王庆国, 张畅, 等. 桃果实褐腐病拮抗菌的筛选、鉴定及其拮抗活性[J]. 食品工业科技, 2017, 38(09):86-90+96. [15] Zhao P, Li P, Wu S, et al. Volatile organic compounds (VOCs) from Bacillus subtilis CF-3 reduce anthracnose and elicit active defense responses in harvested litchi fruits[J]. Applied Microbiology and Biotechnology Express, 2019, 9(1):119. [16] Gao H, Li P, Xu X, et al. Research on volatile organic compounds from Bacillus subtilis CF-3:Biocontrol effects on fruit fungal pathogens and dynamic changes during fermentation[J]. Frontiers in Microbiology, 2018, 9:456. [17] Hassan Z, Thani R, Alnaimi H, et al. Investigation and application of Bacillus licheniformis volatile compounds for the biological control of toxigenic Aspergillus and Penicillium spp.[J]. American Chemical Society Omega, 2019, 4(17):17186-17193. [18] 朱弘元. 解淀粉芽胞杆菌B15的有效抑菌成分的研究[D]. 乌鲁木齐:新疆大学, 2015. [19] Wu Y, Zhou J, Li C, et al. Antifungal and plant growth promotion activity of volatile organic compounds produced by Bacillus amyloliquefaciens[J]. Microbiology, 2019, 8(8):e00813. [20] Farag M A, Zhang H, Ryu C M. Dynamic chemical communication between plants and bacteria through airborne signals:Induced resistance by bacterial volatiles[J]. Journal of Chemical Ecology, 2013, 39(7):1007-1018. [21] Rath M, Mitchell T R, Goldb S E. Volatiles produced by Bacillus mojavensis RRC101 act as plant growth modulators and are strongly culture-dependent[J]. Microbiological Research, 2018, 208:76-84. |