[1] Tang Q Y, Bie X M, Lu Z X, et al. Effects of fengycin from Bacillus subtilis fmbJ on apoptosis and necrosis in Rhizopus stolonifer[J]. Journal of Microbiology, 2014, 52(8):675-680. [2] Yin H P, Guo C L, Wang Y, et al. Fengycin inhibits the growth of the human lung cancer cell line 95D through reactive oxygen species production and mitochondria-dependent apoptosis[J]. Anti-cancer Drugs, 2013, 24(6):587-598. [3] Hu L B, Shi Z Q, Zhang T, et al. Fengycin antibiotics isolated from B-FS01 culture inhibit the growth of Fusarium moniliforme Sheldon ATCC 38932[J]. FEMS Microbiology Letters, 2007, 272(1):91-98. [4] Arrebola E, Jacobs R, Korsten L. Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens[J]. Journal of Applied Microbiology, 2010, 108(2):386-395. [5] Bais H P, Fall R, Vivanco J M. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringaeis facilitated by biofilm formation and surfactin production[J]. Plant Physiology, 2004, 134(1):307-319. [6] Desai J D, Banat I M. Microbial production of surfactants and their commercial potential[J]. Microbiology and Molecular Biology Review, 1997, 61(1):47-64. [7] Ongena M, Jourdan E, Adam A, et al. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants[J]. Environmental Microbiology, 2007, 9(4):1084-1090. [8] Steller S, Vollenbroich D, Leenders F, et al. Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A1/3[J]. Chemistry and Biology, 1999, 6(1):31-41. [9] 赵朋超, 权春善, 金黎明, 等. 氮源和碳源对解淀粉芽胞杆菌Q-426抗菌脂肽合成的影响[J]. 中国生物工程杂志, 2012, 32(10):50-56. [10] Yi L, Zhang G Y, Zhu Z, et al. Optimization of medium composition for lipopeptide production from Bacillus subtilis N7 using response surface methodology[J]. Korean Journal of Microbiology and Biotechnology, 2013, 41(1):52-59. [11] Liu X Y, Ren B, Gao H, et al. Optimization for the production of surfactin with a new synergistic antifungal activity[J]. PLoS ONE, 2012, 7(5):e34430. [12] 刘宁, 郭庆港, 安海, 等. 番茄灰霉病生防细菌BAB-1的鉴定及发酵条件的优化[J]. 中国农业科技导报, 2009, 11(2):56-62. [13] 张晓云, 马平, 李社增, 等. 枯草芽胞杆菌BAB-1防治瓜类白粉病的应用[P]. 中国发明专利. C10158059.7. 2017. [14] 李宝庆, 鹿秀云, 郭庆港, 等. 枯草芽胞杆菌BAB-1产脂肽类及挥发性物质的分离和鉴定[J]. 中国农业科学, 2010, 43(17):3547-3554. [15] 钱常娣, 李宝庆, 郭庆港, 等. 枯草芽胞杆菌菌株BAB-1表面活性素的分离纯化及性质分析[J]. 植物病理学报, 2011, 41(2):196-202. [16] Stein T. Bacillus subtilis antibiotics:structures, syntheses and specific functions[J]. Molecular Microbiology, 2005, 56(4):845-857. [17] Kalai-Grami L, Karkouch I, Naili O, et al. Production and identification of iturin A lipopeptide from Bacillus methyltrophicus TEB1 for control of Phoma tracheiphila[J]. Journal of Basic Microbiology, 2016, 56(8):864-871. [18] Guo Q G, Dong W X, Li S Z, et al. Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease[J]. Microbiological Research, 2014, 169(7-8):533-540. [19] Akpa E, Jacques P, Wathelet B, et al. Influence of culture conditions on lipopeptide production by Bacillus subtilis[J]. Applied Biochemistry and Biotechnology, 2001, 91(1):551-561. [20] Davis D A, Lynch H C, Varley J. The production of surfactin in batch culture by Bacillus subtilis ATCC 21332 is strongly influenced by the conditions of nitrogen metabolism[J]. Enzyme and Microbial Technology, 1999, 25(3):322-329. [21] Sen R, Swaminathan T. Application of response-surface methodology to evaluate the optimum environmental conditions for the enhanced production of surfactin[J]. Applied Microbiology and Biotechnology, 1997, 47(4):358-363. [22] Görke B, Stülke J. Carbon catabolite repression in bacteria:many ways to make the most out of nutrients[J]. Nature Reviews Microbiology, 2008, 6(8):613-624. [23] Buffing M F, Link H, Christodoulou D, et al. Capacity for instantaneous catabolism of preferred and non-preferred carbon sources in Escherichia coli and Bacillus subtilis[J]. Scientific Reports, 2018, 8(1):1-10. [24] Sandrin C, Peypoux F, Michel G. Co-production of surfactin and iturin A, lipopeptides with surfactant and antifungal properties by Bacillus subtilis[J]. Applied Biochemistry and Biotechnology, 1990, 12(4):370-376. [25] Nihorimbere V, Cawoy H, Seyer A, et al. Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain Bacillus amyloliquefaciens S499[J]. FEMS Microbiology Ecology, 2012, 79(1):176-191. [26] Roongawang N, Thaniyavarn J, Thaniyavarn S, et al. Isolation and characterization of a halotolerant Bacillus subtilis BBK-1 which produces three kinds of lipopeptides:bacillomycin L, plipastatin, and surfactin[J]. Extremophiles, 2002, 6(6):499-506. [27] 张晓云, 郭庆港, 鹿秀云, 等. 利用表型芯片技术筛选利于枯草芽胞杆菌Bacillus subtilis BAB-1生长与芽胞形成的营养物质[J]. 植物保护学报, 2020, 47(2):263-272. [28] Nakano M M, Zuber P. Cloning and characterization of srfB, a regulatory gene involved in surfactin production and competence in Bacillus subtilis[J]. Journal of Bacteriology, 1989, 171(10):5347-5353. [29] 别小妹, 吕凤霞, 路兆新, 等. Bacillus subtilis fmbJ脂肽类抗菌物质的分离和鉴定[J]. 生物工程学报, 2006, 22(4):644-649. [30] Peypoux F, Michel G. Controlled biosynthesis of Val7- and Leu7-surfactins[J]. Applied Microbiology and Biotechnology, 1992, 36(4):515-517. [31] Doekel S, Marahiel M A. Biosynthesis of natural products on modular peptide synthetases[J]. Metabolic Engineering, 2001, 3(1):64-77. [32] 孙力军, 路兆新, 别小妹, 等. 培养基对解淀粉芽胞杆菌ES-2菌株产抗菌脂肽的影响[J]. 中国农业科学, 2008(10):3389-3398. [33] Kinsella K, Schulthess C P, Morris T F, et al. Rapid quantification of Bacillus subtilis antibiotics in the rhizosphere[J]. Soil Biology and Biochemistry, 2009, 41(2):374-379. [34] 朱震, 罗毅, 张鹏, 等. 产表面活性素和伊枯草菌素A菌株的筛选及其脂肽类产物的特性[J]. 微生物学通报, 2011, 38(10):1488-1498. [35] 董丽红, 郭庆港, 王培培, 等. PhoR/PhoP双组份对枯草芽胞杆菌NCD-2菌株中surfactin合成的影响[J]. 植物病理学报, 2018, 48(1):119-127. [36] Li D Q, Nie F Y, Wei L H, et al. Screening of high-yielding biocontrol bacterium Bs-916 mutant by ion implantation[J]. Applied Microbiology and Biotechnology, 2007, 75:1401-1408. |