[1] 中国农业科学院植物保护研究所, 中国植物保护学会. 中国农作物病虫害[M]. 3版. 北京: 中国农业出版社, 2015, 25. [2] Savary S, Willocquet L, Pethybridge S J, et al. The global burden of pathogens and pests on major food crops[J]. Nature Ecology & Evolution, 2019, 3(3): 430-439. [3] 陆宴辉, 刘杨, 杨现明, 等. 中国农业害虫综合防治研究进展: 2018年-2022年[J]. 植物保护, 2023, 49(5): 145-166. [4] 张慧, 许宁, 曹丽茹, 等. “化学肥料和农药减施增效综合技术研发”重点专项生物源农药的标志性成果[J]. 中国生物防治学报, 2022, 38(1): 1-8. [5] 刘冰蕾, 郭莉莉, 汪建武, 等. 生物源和新烟碱类杀虫剂对湘北棉区棉叶蝉的毒力测定及田间防效[J]. 昆虫学报, 2023, 66(12): 1667-1674. [6] Stokes B A, Yadav S, Shokal U, et al. Bacterial and fungal pattern recognition receptors in homologous innate signaling pathways of insects and mammals [J]. Frontiers in Microbiology, 2015, 6: 19. [7] Nollmann F I, Dauth C, Mulley G, et al. Insect-specific production of new GameXPeptides in Photorhabdus luminescens TTO1, widespread natural products in entomopathogenic bacteria[J]. ChemBioChem, 2014, 16(2): 205-208. [8] Tobias N J, Shi Y M, Bode H B. Refining the natural product repertoire in entomopathogenic bacteria [J]. Trends Microbiol, 2018, 26(10): 833-840. [9] Shi Y M, Hirschmann M, Shi Y N, et al. Global analysis of biosynthetic gene clusters reveals conserved and unique natural products in entomopathogenic nematode-symbiotic bacteria[J]. Nature Chemistry, 2022, 14(6): 701-712. [10] Khan F, Kim Y. Enhanced virulence of Beauveria bassiana against Thrips tabaci by the addition of bacterial metabolites derived from Xenorhabdus hominickii[J]. Journal of Asia-Pacific Entomology, 2022, 25(4): 101997. [11] Eom S, Park Y-J, Kim H, et al. Development of a high efficient “Dual Bt-Plus” insecticide using a primary form of an entomopathogenic bacterium, Xenorhabdus nematophila[J]. Journal of Microbiology and Biotechnology, 2014, 24(4): 507-521. [12] Plackett R L, Burman J P. The design of optimum multifactorial experiments[J]. Biometrika, 1946, 33: 305-325. [13] Premjit Y. Optimization of electrospray-assisted microencapsulation of probiotics (Leuconostoc lactis) in soy protein isolate-oil particles using Box-Behnken experimental design [J]. Food and Bioprocess Technology, 2021, 14: 1712–1729. [14] 覃天涵, 杨金新, 王璐, 等. 群体感应淬灭活性生防菌GXMZU-5对香蕉细菌性软腐病的生物防治及机制[J]. 热带作物学报, 2025, 46(6): 1472-1479. [15] Fontana D C, De Paula S, Torres A G, et al. Endophytic fungi: biological control and induced resistance to phytopathogens and abiotic stresses [J]. Pathogens, 2021, 10(5). 570. [16] 吴佳奇, 朱学明, 鲍坚东, 等. 稻瘟病生物防治研究进展[J]. 浙江农业学报, 2025, 37(3): 736-744. [17] Lu H L, St. Leger R J. Chapter Seven - Insect Immunity to Entomopathogenic Fungi[M]. Advances in Genetics, 2016, 94, 251-285. [18] 朱向东. 微生物发酵工艺优化研究进展[J]. 化工管理, 2019, (16): 202+205. [19] 许睿, 高萍, 闵涛玲, 等. 高产量非达霉素工程菌的构建及其发酵优化[J]. 中国医药工业杂志, 2020, 51(2): 204-210. [20] 房俊楠, 雷娟, 许力山, 等. 微生物发酵生产γ-聚谷氨酸研究进展[J]. 应用与环境生物学报, 2018, 24(5): 1041-1049. [21] 魏舒宇. 谷氨酸棒杆菌生产4-羟基异亮氨酸的无抗发酵及发酵条件优化[D]. 无锡: 江南大学, 2022. [22] 刘芳, 权婷婷, 王开梅, 等. 响应面法优化梨黑斑病生防链霉菌SZF-179发酵培养基[J]. 中国生物防治学报, 2024, 40(4): 936-947. [23] 鲍青青, 毛银, 李国辉, 等. 庚二酸的生物合成及发酵工艺条件优化[J]. 食品与发酵工业, 2022, 48(22): 34-39. [24] 兰成忠, 林雄, 甘林, 等. 贝莱斯芽孢杆菌FJ17-4发酵培养基和发酵条件优化[J]. 福建农业学报, 2022, 37(10): 1335-1343. [25] 王庚, 张晓梅, 史劲松, 等. L-丝氨酸生产菌株的高通量筛选及其发酵优化[J]. 食品与发酵工业, 2025, 51(18): 1-7. [26] 张瑶, 邓勋, 李亚洲, 等. 基于响应面法的金龟子绿僵菌M14-1菌株固体发酵培养条件优化[J]. 中国森林病虫, 2025, 44(3): 50-59. |