[1] 王哲, 钟涛, 刘培斌, 等. 韭菜迟眼蕈蚊发生规律及防治方法研究进展[J]. 环境昆虫学报, 2017, 39(6): 1397-1406. [2] Zhang P, Zhao Y H, Wang Q H, et al. Lethal and sublethal effects of the chitin synthesis inhibitor chlorfluazuron on Bradysia odoriphaga Yang and Zhang (Diptera: Sciaridae)[J]. Pesticide Biochemistry and Physiology, 2017, 136: 80-88. [3] 党志红, 董建臻, 高占林, 等. 不同种植方式下韭菜迟眼蕈蚊发生为害规律的研究[J]. 河北农业大学学报, 2001, 24(4): 65-68. [4] Li W X, Yang Y T, Xie W, et al. Effects of temperature on the age-stage, two-sex life table of Bradysia odoriphaga (Diptera: Sciaridae)[J]. Journal of Economic Entomology, 2015, 108: 126-134. [5] Yabuki Y, Mukaida Y, Saito Y, et al. Characterisation of volatile sulphur-containing compounds generated in crushed leaves of Chinese chive (Allium tuberosum Rottler)[J]. Food Chemistry, 2010, 120: 343-348. [6] Hare J D. Ecology and management of the Colorado potato beetle[J]. Annual Review of Entomology, 1990, 35: 81-100. [7] Zhang X B, Candas M, Criko N B, et al. A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(26): 9897-9902. [8] Sanchis V. From microbial sprays to insect-resistant transgenic plants: history of the biospesticide. A review[J]. Agronomy for Sustainable Development, 2011, 30(1): 217-231. [9] Favret M E, Yousten A A. Thuricin: the bacteriocin produced by Bacillus thuringiensis[J]. Journal of Invertebrate Pathology, 1989, 53(2): 206-216. [10] Cherif A, Rezgui W, Raddadi N, et al. Characterization and partial purification of entomocin 110, a newly identified bacteriocin from Bacillus thuringiensis subsp. Entomocidus HD110[J]. Microbiological Research, 2008, 163: 684-692. [11] Nester E W, Thomashow L S, Metthew M, et al. 100 Years of Bacillus thuringiensis: A critical scientific assessment[M]//American Academy of Microbiology, 2002. [12] Fred S B, Bruce G H, Roy L F. Safety and advantages of Bacillus thuringiensis-protected plants to control insect pests-ScienceDirect[J]. Regulatory Toxicology and Pharmacology, 2000, 32(2): 156-173. [13] 任羽, 郭文超. 苏云金芽胞杆菌在马铃薯甲虫防治上的研究进展[J]. 植物保护学报, 2017, 44(5): 705-712. [14] 喻子牛. 苏云金杆菌[M]. 北京:科学出版社, 1990, 285-423. [15] 陈宇熹, 叶舒婷, 蔡美凤, 等. 高效杀蚊苏云金芽孢杆菌BRC-LLP29的发酵优化[J]. 生物数学学报, 2012, 27(1): 175-185. [16] 成雪飞, 宋志强, 王剑, 等. 响应面法优化苏云金芽胞杆菌YC-10发酵培养基[J]. 湖南师范大学学报(自然科学版), 2016, 39(4): 23-28. [17] 张路路, 朱朝华, 郭刚. 苏云金芽孢杆菌A322菌株发酵培养基和发酵条件的优化[J]. 热带生物学报, 2014, 5(3): 253-259. [18] 宋健, 曹伟平, 杜立新. 对韭蛆高毒力Bt菌株与常用化学杀虫剂相容性研究[J]. 中国生物防治学报, 2017, 33(6): 739-746. [19] 龚军辉, 王晶. 稀释涂布平板法计数活菌的方法简介[J]. 生物学教学, 2018, 43(2): 70-71. [20] 兰周. 多杀菌素生物合成基因簇的克隆及异源表达载体的构建[D]. 福州:福建农林大学, 2012. [21] Sumant P, Qasim K B, Rani G. Optimization of alkaline protease production from Bacillus sp. by response surface methodology[J]. Current Microbiology, 2002, 44: 286-290. [22] 周虓, 郑毅, 叶海梅, 等. 响应面分析法优化耐高温蛋白酶发酵培养基[J]. 生物数学学报, 2007, 22(1): 113-118. [23] 郑毅, 周堍, 黄勤清, 等. 产耐温蛋白酶苏云金芽孢杆菌FS140 液体发酵条件优化[J]. 应用与环境生物学报, 2007, 13(5): 708-712. [24] 杨梅, 张峰, 苏新华. 苏云金芽孢杆菌LLB19 发酵培养基的优化[J]. 福建师范大学学报, 2009, 25(2): 75-81. [25] 张群林, 张志国, 余洁, 等. 响应面分析法优化苏云金芽孢杆菌BRC-ZQL3 菌株发酵培养基[J]. 福建师范大学学报, 2011, 27(5): 85-90. [26] 李姝江, 王淋敏, 谯天敏, 等. 利用响应面法优化贝莱斯芽孢杆菌ZJ20发酵参数[J]. 西北农林科技大学学报(自然科学版), 2019, 47(2): 88-96. |