[1] 国际农业生物技术应用服务组织. 2019年全球生物技术/转基因作物商业化发展态势[J].中国生物工程杂志, 2021, 41(1):114-119. [2] Flachowsky G, Schafft H, Meyer U. Animal feeding studies for nutritional and safety assessments of feeds from genetically modified plants:a review[J]. Journal of Consumer Protection and Food Safety, 2012, 7(3):179-194. [3] Guertler P, Paul V, Steinke K, et al. Long-term feeding of genetically modified corn (MON810)-fate of cry1Ab DNA and recombinant protein during the metabolism of the dairy cow[J]. Livestock Science, 2010, 131(2):250-259. [4] Napier J A, Haslam R P, Tsalavouta M, et al. The challenges of delivering genetically modified crops with nutritional enhancement traits[J]. Nature Plants, 2019, 5(6):563-567. [5] Aam A, Ah B, Erb C, et al. Food adulteration with genetically modified soybeans and maize, meat of animal species and ractopamine residues in different food products[J]. Electronic Journal of Biotechnology, 2022, 55:65-77. [6] Hemre G I, Sagstad A, Bakke-Mckellep A M, et al. Nutritional, physiological, and histological responses in Atlantic salmon, Salmo salar L. fed diets with genetically modified maize[J]. FEMS Yeast Research, 2007, 13(3):186-199. [7] Sanden M, Krogdahl A, Bakke-Mckellep A M, et al. Growth performance and organ development in Atlantic salmon, Salmo salar L. parr fed genetically modified (GM) soybean and maize[J]. Aquaculture Nutrition, 2010, 12(1):1-14. [8] Bakke-Mckellep A M, Sanden M, Danieli A, et al. Atlantic salmon (Salmo salar L.) parr fed genetically modified soybeans and maize:histological, digestive, metabolic, and immunological investigations[J]. Research in Veterinary Science, 2008, 84(3):395-408. [9] Sissener N H, Sanden M, Bakke A M, et al. A long term trial with Atlantic salmon (Salmo salar L.) fed genetically modified soy; focusing general health and performance before, during and after the parr-smolt transformation[J]. Aquaculture, 2009, 294(1-2):108-117. [10] Brown P B, Wilson K A, Jonker Y, et al. Glyphosate tolerant canola meal is equivalent to the parental line in diets fed to rainbow trout[J]. Journal of Agricultural and Food Chemistry, 2003, 51(15):4268-4272. [11] Chainark P, Satoh S, Hino T, et al. Availability of genetically modified soybean meal in rainbow trout Oncorhynchus mykiss diets[J]. Fisheries Science, 2006, 72(5):1072-1078. [12] Chainark P, Satoh S, Hirono I, et al. Availability of genetically modified feed ingredient:investigations of ingested foreign DNA in rainbow trout Oncorhynchus mykiss[J]. Fisheries Science, 2008,74:380-390. [13] 贾敏,程婉清,穆洪新,等.基于斑马鱼胚胎毒性与非靶化学分析的典型工业园区废水处理效率研究[J].环境科学学报, 2022, 42(6):138-146. [14] Lin H, Lin F, Yuan J, et al. Toxic effects and potential mechanisms of Fluxapyroxad to zebrafish (Danio rerio) embryos[J]. Science of the Total Environment, 2021,769(17):144-155. [15] Hsu R J, Lin C Y, Hoi H S, et al. Novel intronic microRNA represses zebrafish myf5 promoter activity through silencing dickkopf-3 gene[J]. Nucleic Acids Research, 2010, 38(13):4384-4393. [16] Moreira-Santos M, Donato C, Lopes I, et al. Avoidance tests with small fish:determination of the median avoidance concentration and of the lowest-observed effect gradient[J]. Environmental Toxicology and Chemistry, 2008, 27(7):1576-1582. [17] Araújo C V M, Griffith D M, Vera-Vera V, et al. A novel approach to assessing environmental disturbance based on habitat selection by zebrafish as a model organism[J]. Science of the Total Environment, 2018, 619:906-915. [18] Ogodo A C, Agwaranze D I, Aliba N V, et al. Fermentation by lactic acid bacteria consortium and its effect on anti-nutritional factors in maize flour[J]. Journal of Biological Sciences, 2019, 19(1):17-23. [19] Sissener N H, Johannessen L E, Hevrøy E M, et al. Zebrafish (Danio rerio) as a model for investigating the safety of GM feed ingredients (soya and maize); performance, stress response and uptake of dietary DNA sequences[J]. British Journal of Nutrition, 2010, 103(1):3-15. [20] 董姗姗,章嫡妮,张振华,等.转mCry1Ac基因玉米BT799对斑马鱼的生态毒理学效应[J].应用生态学报, 2019, 30(8):2845-2853. [21] Sanden M, Ornsrud R, Sissener N H, et al. Cross-generational feeding of Bt (Bacillus thuringiensis)-maize to zebrafish (Danio rerio) showed no adverse effects on the parental or offspring generations[J]. British Journal of Nutrition, 2013, 110(12):2222-2233. [22] 王颢潜,肖芳,杨蕾,等.转基因玉米双抗12-5转化体特异性PCR方法验证结果分析[J].生物技术通报, 2020, 36(5):48-55. [23] 张丹丹,吴孔明.国产Bt-Cry1Ab和Bt-(Cry1Ab+Vip3Aa)玉米对草地贪夜蛾的抗性测定[J].植物保护2019, 45(4):54-60. [24] Li P G, Yang C, Yue R, et al. Modulation of the fecal microbiota in Sprague-Dawley rats using genetically modified and isogenic corn lines[J]. Journal of Agricultural and Food Chemistry, 2018, 66(2):551-561. [25] Zhang L, Shen W, Fang Z, et al. Effects of genetically modified maize expressing Cry1Ab and EPSPS proteins on Japanese quail[J]. Poultry Science, 2021,100(2):1068-1075. [26] 张莉,韩娟,刘标.转cry1Ab和epsps基因玉米C0030.3.5对大型蚤(Daphnia magna)的生态毒性研究[J].生态毒理学报, 2018, 13(3):122-128. [27] 董姗姗,章嫡妮,于赐刚,等.转Cry1Ie基因玉米和转CP4-EPSPS基因大豆对斑马鱼的生态毒性[J].生态毒理学报, 2021, 16(5):271-284. [28] Hassan A B, Ahmed I. Antinutritional factors content and availability of protein, starch and mineral of maize (Zeamays linnaus) and lentil (Lens culinaris) as influenced by domestic processing[J]. Journal of Food Technology, 2013, 157(S11):1-106. [29] John M G, Sheran H W L. Feed and feeding regime affect growth rate and gonadosomatic index of adult zebrafish (Danio rerio)[J]. Zebrafish, 2013, 10(4):532-540. [30] Dong S, Zhang D, Yu C, et al. Using droplet digital PCR to detect plant DNA in tissues of zebrafish (Danio rerio) fed genetically modified maize[J]. Aquaculture Research, 2021, 52(9):4467-4474. [31] Raddadi N, Sorlini C, Nordgrd L, et al. The stability and degradation of dietary DNA in the gastrointestinal tract of mammals:implications for horizontal gene transfer and the biosafety of GMOs[J]. Critical Reviews in Food Science and Nutrition, 2012, 52(2):142-161 |