[1] 国家统计网.年度统计数据[EB/OL]. http://data.stats.gov.cn/easyquery.htm?cn=C01. [2] 王振营,王晓鸣.我国玉米病虫害发生现状、趋势与防控对策[J].植物保护, 2019, 45(1):1-11. [3] Ishida Y, Satio H, Ohta S, et al. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens[J]. Nature Biotechnology, 1996, 14(6):745-750. [4] 梁晋刚,张旭冬,毕研哲,等.转基因抗虫玉米发展现状与展望[J].中国生物工程杂志, 2021, 41(6):98-104. [5] ISAAA. GM Approval Database[EB/OL]. http://www.isaaa.org/gmapprovaldatabase/default.asp. [6] 转基因权威关注.审批信息[EB/OL]. http://www.moa.gov.cn/ztzl/zjyqwgz/spxx/. [7] Yu H L, Li Y H, Wu K M. Risk Assessment and ecological effects of transgenic Bacillus thuringiensis crops on non-target organisms[J]. Journal of Integrative Plant Biology, 2011, 53(7):520-538. [8] 农业部953号公告-10.1-2007.转基因植物及其产品环境安全检测抗虫玉米第1部分:抗虫性[S].北京:中国农业出版社, 2007. [9] Romeis J, Bartsch D, Bigler F, et al. Assessment of risk of insect-resistant transgenic crops to nontarget arthropods[J]. Nature Biotechnology, 2008, 26:203-208. [10] Romeis J, Meissle M. Non-target risk assessment of Bt crops-Cry protein uptake by aphids[J]. Journal of Applied Entomology, 2011, 135:1-2. [11] 农业农村部公告第111号-13-2018.转基因植物环境安全检测外源杀虫蛋白对非靶标生物影响第1部分:日本通草蛉幼虫[S].北京:中国农业出版社, 2019. [12] 农业农村部公告第111号-15-2018.转基因植物环境安全检测外源杀虫蛋白对非靶标生物影响第3部分:龟纹瓢虫幼虫[S].中国农业出版社, 2018. [13] 农业农村部公告第423号-12-2021.转基因植物环境安全检测抗虫植物对非靶标生物影响二斑叶螨[S].北京:中国农业出版社, 2021. [14] James C. 20th anniversary (1996 to 2015) of the global commercialization of biotech crops and biotech crop highlights in 2015[R]. Ithaca, NY:ISAAA, 2015. [15] Koziel M G, Beland G L, Bowman C, et al. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis[J]. Nature Biotechnology, 1993, 11(2):194-200. [16] He K L, Wang Z Y, Zhou D R, et al. Evaluation of transgenic Bt corn for resistance to the Asian Corn Borer (Lepidoptera:Pyralidae)[J]. Journal of Economic Entomology, 2003(3):935-940. [17] 徐晓丽,姜媛媛,王鹏飞,等.表达Cry1Ab和Cry2Ab蛋白的转基因玉米GAB-3对四种主要鳞翅目害虫的抗性评价[J].中国农业科技导报, 2020, 22(12):97-104. [18] 孙丹丹,全玉东,王月琴,等.转Bt基因玉米(瑞丰125、DBN9936、DBN9978)对亚洲玉米螟的抗虫效果研究[J].植物保护, 2021, 47(3):206-211. [19] 任振涛,沈文静,刘标,等.转基因玉米对田间节肢动物群落多样性的影响[J].中国农业科学, 2017, 50(12):2315-2325. [20] 马燕婕,何浩鹏,沈文静,等.转基因玉米对田间节肢动物群落多样性的影响[J].生物多样性, 2019, 27(4):419-432. [21] 郝文媛.基于组学技术评价转基因抗虫玉米的非预期效应[D].哈尔滨:哈尔滨师范大学, 2017. [22] 陈彦君,李俊生,闫冰,等.转cry1Ah基因抗虫玉米HGK60对生物多样性的影响[J].环境科学研究, 2021, 34(4):964-975. [23] Storer N P, Babcock J M, Schlenz M, et al. Discovery and characterization of field resistance to Bt maize:Spodoptera frugiperda(Lepidoptera:Noctuidae) in Puerto Rico[J]. Journal of Economic Entomology, 2010, 103(4):1031-1038. [24] 李国平,吴孔明.中国转基因抗虫玉米的商业化策略[J].植物保护学报, 2022, 49(1):17-32. [25] Li Y H, Hallerman E H, Peng Y F. How can China prepare for the domestic cultivation of Bt maize?[J]. Trends in Food Science& Technology, 2018, 73:87-88. [26] Li Y H, Romeis J, Wu K M, et al. Tier-1 assays for assessing the toxicity of insecticidal proteins produced by genetically engineered plants to non-target arthropods[J]. Insect Science, 2014, 21:125-134. [27] Li Y H, Hu L, Romeis J, et al. Use of an artificial diet system to study the toxicity of gut-active insecticidal compounds on larvae of the green lacewing Chrysoperla sinica[J]. Biological Control, 2014, 69:45-51. [28] Ali I, Zhang S, Muhammad M S, et al. Bt proteins have no detrimental effects on larvae of the Green Lacewing, Chrysopa pallens(Rambur)(Neuroptera:Chrysopidae)[J]. Neotropical Entomology, 2017, 47:336-343. [29] 李亚荣,张帅,雒珺瑜,等. Cry2Ab蛋白对龟纹瓢虫的安全性研究[J].生物安全学报, 2019, 28(3):195-199. [30] Malone L A, Gatehouse A M R, Barratt B I P. Beyond Bt:alternative strategies for insect-resistant genetically modified crops[J]. Progress in Biological Control, 2008, 5:357-417. [31] Malone L A, Burgess E P J, Stefanovic D. Effects of a Bacillus thuringiensis toxin, two Bacillus thuringiensis bio-pesticide formulations and a soybean trypsin inhibitor on honeybee (Apis mellifera L.) survival and food consumption[J]. Apidologie, 1999, 30:465-473. [32] Malone L A, Burgess E P J, Gatehouse H S, et al. Effects of ingestion of a Bacillus thuringiensis toxin and a trypsin inhibitor on honey bee flight activity and longevity[J]. Apidologie, 2001, 32:57-68. [33] Rose R, Dively G P, Pettis J. Effects of Bt corn pollen on honey bees:emphasis on protocol development[J]. Apidologie, 2007, 38(4):368-377. [34] Babendreier D, Kalberer N M, Romeis J, et al. Influence of Bt-transgenic pollen, Bt-toxin and protease inhibitor (SBTI) ingestion on development of the hypopharyngeal glands in honeybees[J]. Apidologie, 2005, 36(4):585-594. [35] Dai P L, Zhou W, Zhang J, et al. Field assessment of Bt cry1Ah corn pollen on the survival, development and behavior of Apis mellifera ligustica[J]. Ecotoxicology and Environmental Safety, 2012, 79:232-237. [36] Xie X W, Cui Z F, Wang Y N, et al. Bacillus thuringiensis maize expressing a fusion gene Cry1Ab/Cry1AcZM does not harm valued pollen feeders[J]. Toxins-Basel, 2018, 11(1):8. [37] Wang Y Y, Li Y H, Huang Z, et al. Toxicological, biochemical, and histopathological analyses demonstrating that Cry1C and Cry2A are not toxic to larvae of the honeybee, Apis mellifera[J]. Journal of Agricultural and Food Chemistry 2015, 63:6126-6132. [38] Anderson P L, Hellmich R L, Sears M K, et al. Effects of Cry1Ab-expressing corn anthers on monarch butterfly larvae[J]. Environmental Entomology, 2004(4):1109-1115. [39] Dively G P, Rose R, Sears M K, et al. Effects on monarch butterfly larvae (Lepidoptera:Danaidae) after continuous exposure to Cry1Ab-expressing corn during anthesis[J]. Environmental Entomology, 2004, 33(4):1116-1125. [40] Pan H P, Yang X W, Bidne K, et al. Dietary risk assessment of v-ATPase A dsRNAs on monarch butterfly larvae[J]. Frontier in Plant Science, 2017, 8:242. [41] 常雪.三种转Bt基因玉米的抗虫性评估及其对非靶标经济昆虫家蚕和捕食性天敌瓢虫的安全性评价[D].杭州:浙江大学, 2013. [42] Lang A, Oehen B, Ross J H, et al. Potential exposure of butterflies in protected habitats by Bt maize cultivation:a case study in Switzerland[J]. Biological Conservation, 2015, 192:369-377. [43] 李文东,叶恭银,吴孔明,等.转抗虫基因棉花和玉米花粉对家蚕生长发育影响的评价[J].中国农业科学, 2002(12):1543-1549. [44] 姜媛媛,纪艺,来勇敏,等.转Cry抗虫基因玉米对家蚕的安全性评价[J].浙江农业学报, 2020, 32(11):2042-2049. [45] 邵元虎,张卫信,刘胜杰,等.土壤动物多样性及其生态功能[J].生态学报, 2015, 35(20):6614-6625. [46] Saxena D, Stotzky G. Bacillus thuringiensis(Bt) toxin released from root exudates and biomass of Bt corn has no apparent effect on earthworms, nematodes, protozoa, bacteria, and fungi in soil[J]. Soil Biology& Biochemistry, 2001, 33(9):1225-1230. [47] O'Callaghan M, Glare T R, Burgess E, et al. Effects of plants genetically modified for insect resistance on nontarget organisms[J]. Annual Review of Entomology, 2005, 50(1):271-292. [48] Zwahlen C, Hilbeck A, Nentwig W. Field decomposition of transgenic Bt maize residue and the impact on non-target soil invertebrates[J]. Plant& Soil, 2007, 300(1-2):245-257. [49] Clark B W, Coats J R. Subacute effects of Cry1Ab Bt corn litter on the earthworm Eisenia fetida and the springtail Folsomia candida[J]. Environmental Entomology, 2006, 35(4):1121-1129. [50] Song X Y, Chang L, Reddy G P, et al. Use of Taxonomic and trait-based approaches to evaluate the effects of transgenic Cry1Ac corn on the community characteristics of soil Collembola[J]. Environmental Entomology, 2019, 48(1):263-269. [51] Wang B F, Wu F C, Yin J Q, et al. Use of Taxonomic and trait-based approaches to evaluate the effect of Bt maize expressing Cry1Ie protein on non-target Collembola:a case study in Northeast China[J]. Insects, 2021, 12(2):88. [52] Schrader S, Münchenberg T, Baumgarte S, et al. Earthworms of different functional groups affect the fate of the Bt-toxin Cry1Ab from transgenic maize in soil[J]. European Journal of Soil Biology, 2008, 44(3):283-289. [53] Lu Y H, Wu K M, Jiang Y Y, et al. Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China[J]. Science, 2010, 328(5982):1151-1154. [54] Anway M D, Cupp A S, Uzumcu M, et al. Epigenetic transgenerational actions of endocrine disruptors and male fertility[J]. Science, 2005, 308(5727):1466-1469. [55] 孙丹丹,陈瑜,王月琴,等. Bt蛋白Vip3Aa19、Cry1Ab和Cry1Ah对玉米蚜的效应评价[J].生物安全学报, 2020, 29(3):195-201. [56] Ramirez-Romero R, Desneux N, Chaufaux J, et al. Bt-maize effects on biological parameters of the non-target aphid Sitobion avenae(Homoptera:Aphididae) and Cry1Ab toxin detection[J]. Pesticide Biochemistry& Physiology, 2008, 91(2):110-115. [57] Aqeel A, Ignacio N, Wladecir O, et al. Transportable data from non-target arthropod field studies for the environmental risk assessment of genetically modified maize expressing an insecticidal double-stranded RNA[J]. Transgenic Research, 2016, 25(1):1-17. [58] 叶恭银,陈洋,田俊策,等.转Bt基因抗虫作物对非靶标生物的影响[J].植物保护, 2011, 37(6):1-10. [59] Bakan B, Melcion D, Richard-Molard D, et al. Fungal growth and fusarium mycotoxin content in isogenic traditional maize and genetically modified maize grown in France and Spain[J]. Journal of Agricultural and Food Chemistry, 2002, 50(4):728-731. [60] Tabashnik B E. Communal benefits of transgenic corn[J]. Science, 2010, 330(6001):189-190. [61] Wu K M, Lu Y H, Feng H Q, et al. Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton[J]. Science, 2008, 321(5896):1676-1678. [62] Lu Y H, Qiu F, Feng H Q, et al. Species composition and seasonal abundance of pestiferous plant bugs (Hemiptera:Miridae) on Bt cotton in China[J]. Crop Protection, 2008, 27(3-5):465-472 |