[1] Ross J R, Nam K H, Dauria J C, et al. S-Adenosyl-L-methionine:salicylic acid carboxyl methyltransferase, an enzyme involved in floral scent production and plant defense, represents a new class of plant methyltransferases[J]. Archives of Biochemistry and Biophysics, 1999, 367(1):9-16.
[2] Kato M, Mizuno K, Crozier A, et al. Caffeine synthase gene from tea leaves[J]. Nature, 2000, 406(6799):956.
[3] Murfitt L M, Kolosova N, Mann C J, et al. Purification and characterization of S-adenosyl-L-methionine:benzoic acid carboxyl methyltransferase, the enzyme responsible for biosynthesis of the volatile ester methyl benzoate in flowers of Antirrhinum majus[J]. Archives of Biochemistry and Biophysics, 2000, 382(1):145-151.
[4] Seo H S, Song J T, Cheong J J, et al. Jasmonic acid carboxyl methyltransferase:a key enzyme for jasmonate-regulated plant responses[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(8):4788-4793.
[5] Zubieta C. Structural basis for substrate recognition in the salicylic acid carboxyl methyltransferase family[J]. The Plant Cell, 2003, 15(8):1704-1716.
[6] Yang Y, Yuan J S, Ross J, et al. An Arabidopsis thaliana methyltransferase capable of methylating farnesoic acid[J]. Archives of Biochemistry and Biophysics, 2006, 448(1-2):123-132.
[7] Varbanova M, Yamaguchi S, Yang Y, et al. Methylation of gibberellins by Arabidopsis GAMT1 and GAMT2[J]. The Plant Cell, 2007, 19(1):32-45.
[8] Kollner T G, Lenk C, Zhao N, et al. Herbivore-induced SABATH methyltransferases of maize that methylate anthranilic acid using S-Adenosyl-L-Methionine[J]. Plant Physiology, 2010, 153(4):1795-1807.
[9] Dudareva N, Murfitt L M, Mann C J, et al. Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers[J]. The Plant Cell, 2000, 12(6):949-961.
[10] Pott M B, Hippauf F, Saschenbrecker S, et al. Biochemical and structural characterization of benzenoid carboxyl methyltransferases involved in floral scent production in Stephanotis floribunda and Nicotiana suaveolens[J]. Plant Molecular Biology, 2004, 135(4):1946-1955.
[11] Hippauf F, Michalsky E, Huang R, et al. Enzymatic, expression and structural divergences among carboxyl O-methyltransferases after gene duplication and speciation in Nicotiana[J]. Plant Molecular Biology, 2010, 72(3):311-330.
[12] Negre F, Kish C M, Boatright J, et al. Regulation of methylbenzoate emission after pollination in snapdragon and petunia flowers[J]. The Plant Cell, 2003, 15(12):2992-3006.
[13] Zhao N, Guan J, Ferrer J L, et al. Biosynthesis and emission of insect-induced methyl salicylate and methyl benzoate from rice[J]. Plant Physiology and Biochemistry, 2010, 48(4):279-287.
[14] Chen F, D'auria J C, Tholl D, et al. An Arabidopsis thaliana gene for methylsalicylate biosynthesis, identified by a biochemical genomics approach, has a role in defense[J]. Plant Journal for Cell and Molecular Biology, 2003, 36(5):577-588.
[15] Wang H, Sun M, Li L L, et al. Cloning and characterization of a benzoic acid/salicylic acid carboxyl methyltransferase gene involved in floral scent production from lily (Lilium ‘Yelloween’)[J]. Genetics and Molecular Research, 2015, 14(4):14510-14521.
[16] Knudsen J T, Tollsten L. Trends in floral scent chemistry in pollination syndromes:floral scent composition in moth-pollinated taxa[J]. Botanical Journal of the Linnean Society, 1993, 113(3):263-284.
[17] Shulaev V, Silverman P, Raskin I. Airborne signalling by methyl salicylate in plant pathogen resistance[J]. Nature, 1997, 385(6618):718-721.
[18] Seskar M, Shulaev V, Raskin I. Endogenous methyl salicylate in pathogen-inoculated tobacco plants[J]. Plant Physiology, 1998, 116(1):387-392.
[19] Park S W, Kaimoyo E, Kumar D, et al. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance[J]. Science, 2007, 318(5847):113-116.
[20] Takabayashi J, Dicke M. Plant-carnivore mutualism through herbivore-induced carnivore attractants[J]. Trends in Plant Science, 1996, 1(4):109-113.
[21] Pare P W, Tumlinson J H. De novo biosynthesis of volatiles induced by insect herbivory in cotton plants[J]. Plant Physiology, 1997, 114(4):1161-1167.
[22] Arimura G, Ozawa R, Nishioka T, et al. Herbivore-induced volatiles induce the emission of ethylene in neighboring lima bean plants[J]. The Plant Journal, 2002, 29(1):87-98.
[23] Ament K, Kant M R, Sabelis M W, et al. Jasmonic acid is a key regulator of spider mite-induced volatile terpenoid and methyl salicylate emission in tomato[J]. Plant Physiology, 2004, 135(4):2025-2037.
[24] Zhu J, Park K C. Methyl salicylate, a soybean aphid-induced plant volatile attractive to the predator Coccinella septempunctata[J]. Journal of Chemical Ecology, 2005, 31(8):1733-1746.
[25] Van Poecke R M, Dicke M. Induced parasitoid attraction by Arabidopsis thaliana:involvement of the octadecanoid and the salicylic acid pathway[J]. Journal of Experimental Botany, 2002, 53(375):1793-1799.
[26] Lin J, Mazarei M, Zhao N, et al. Transgenic soybean overexpressing GmSAMT1 exhibits resistance to multiple-HG types of soybean cyst nematode Heterodera glycines[J]. Plant Biotechnology Journal, 2016, 14(11):2100-2109.
[27] Fukami H, Asakura T, Hirano H, et al. Salicylic acid carboxyl methyltransferase induced in hairy root cultures of Atropa belladonna after treatment with exogeneously added salicylic acid[J]. Plant and Cell Physiology, 2002, 43(9):1054-1058.
[28] Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucleic Acids Research, 1997, 25(25):4876-4882.
[29] Tamura K, Peterson D, Peterson N, et al. MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology and Evolution, 2011, 28(10):2731-2739.
[30] Artico S, Nardeli S M, Brilhante O, et al. Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data[J]. BMC Plant Biology, 2010, 10(1):1-12.
[31] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Ct method[J]. Methods, 2001, 25(4):402-408.
[32] 于惠林, 张永军, 孙国军, 等. 棉铃虫天敌中红侧沟茧蜂Microplitis mediator对不同处理棉花的趋性行为反应[J]. 应用与环境生物学报, 2006, 12(6):809-813.
[33] 黄欣蒸. 萜烯挥发物介导棉花响应绿盲蝽胁迫的防御反应分子机制[D]. 杨凌:西北农林科技大学, 2016.
[34] Pott M B, Pichersky E, Piechulla B. Evening specific oscillations of scent emission, SAMT enzyme activity, and SAMT mRNA in flowers of Stephanotis floribunda[J]. Journal of Plant Physiology, 2002, 159(8):925-934.
[35] D'auria J C, Chen F, Pichersky E. The SABATH family of MTS in Arabidopsis thaliana and other plant species[M]. Recent Advances in Phytochemistry, 2003, 37(3):253-283.
[36] Zhao N, Ferrer J L, Ross J, et al. Structural, biochemical, and phylogenetic analyses suggest that indole-3-acetic acid methyltransferase is an evolutionarily ancient member of the SABATH family[J]. Plant Physiology, 2008, 146(2):455-467.
[37] Li F, Fan G, Wang K, et al. Genome sequence of the cultivated cotton Gossypium arboreum[J]. Nature Genetics, 2014, 46(6):567-572.
[38] Liu X, Zhao B, Zheng H J, et al. Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites[J]. Scientific Reports, 2015(5):14139.
[39] Zhang T, Hu Y, Jiang W, et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement[J]. Nature Biotechnology, 2015, 33(5):531-537.
[40] Li F, Fan G, Lu C, et al. Genome sequence of cultivated upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution[J]. Nature Biotechnology, 2015, 33(5):524-530.
[41] 孔垂华, 娄永根. 化学生态学前沿[M]. 北京:高等教育出版社, 2010, 201-233.
[42] Attaran E, Zeier T E, Griebel T, et al. Methyl salicylate production and jasmonate signaling are not essential for systemic acquired resistance in Arabidopsis[J]. The Plant Cell, 2009, 21(3):954-971.
[43] Liu P P, Yang Y, Pichersky E, et al. Altering expression of benzoic acid/salicylic acid carboxyl methyltransferase 1 compromises systemic acquired resistance and PAMP-triggered immunity in Arabidopsis[J]. Molecular Plant-Microbe Interactions, 2010, 23(1):82-90.
[44] Pan H S, Lu Y H, Xiu C L, et al. Volatile fragrances associated with flowers mediate host plant alternation of a polyphagous mirid bug[J]. Scientific Reports, 2015(5):14805. |