[1] 刘仰青, 吴孔明, 薛芳森. 盲蝽象抗药性治理的研究进展[J]. 华东昆虫学报, 2007, 16(2):141-148. [2] Fitt G P, Mares C L, Llewellyn D J. Field evaluation and potential ecological impact of transgenic cottons (Gossypium hirsutum) in Australia[J]. Biocontrol Science and Technology, 1994, 4(4):535-548. [3] Bodnaruk K P. Daily activity patterns of adult Creontiades dilutes and Campylomma liebknechti (Hemiptera:Miridae) in early-flowering cotton[J]. Australian Journal of Entomology, 1992, 31(4):331-332. [4] Lu Y H, Wu K M, Jiang Y Y, et al. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services[J]. Nature, 2012, 487(7407):362-365. [5] Lu Y H, Wu K M, Jiang Y Y, et al. Mirid bug outbreaks in multiple crops correlated with widescale adoption of Bt cotton in China[J]. Science, 2010, 328(5982):1151-1154. [6] Lu Y H, Wu K M. Mirid bugs in China:pest status and management strategies[J]. Outlooks on Pest Management, 2011, 22(6):248-252. [7] 彩万志. 孤雌生殖及其在进化上的意义[J]. 昆虫知识, 1989, 26(6):364-367. [8] 王成业. 昆虫孤雌生殖起源的遗传机制和进化意义[J]. 动物学研究, 2011, 32(6):689-695. [9] Pálsson S, Pamilo P. The effects of deleterious mutations on linked, neutral variation in small populations[J]. Genetics, 1999, 153(1):475-483. [10] Poon A, Otto S P. Compensating for our load of mutations:Freezing the meltdown of small populations[J]. Evolution, 2000, 54(5):1467-1479. [11] 王荫长. 昆虫生物化学[M]. 北京:中国农业出版社, 2001, 448-480. [12] Su M P, Andrés M, Boyd-Gibbins N, et al. Sex and species specific hearing mechanisms in mosquito flagellar ears[J]. Nature communication, 2018, 9:3911. [13] 刘若楠, 颜忠诚. 昆虫求偶行为方式及生物学意义[J]. 生物学通报, 2008, 43(9):6-8. [14] Ragland S S, Sohal R S. Mating behavior, physical activity and aging in the housefly, Musca domestica[J]. Experimental Gerontology, 1973, 8(3):135-145. [15] 辛泽华. 蜻蜓的交配[J]. 生物学教学, 1996, 9:42. [16] Laturney M, Billeter J C. Drosophila melanogaster females restore their attractiveness after mating by removing male anti-aphrodisiac pheromones[J]. Nature Communications, 2016, 7(1):12322. [17] 杜家纬. 昆虫性信息及其应用[M]. 北京:中国林业出版社, 1998, 156-157. [18] 张涛, 杨代斌, 李永红, 等. 盲蝽科害虫性信息素研究进展[C]. 中国植物保护学会学术年会, 2008, 163-167. [19] Yang C Y, Kim S J, Kim J, et al. Sex pheromones and reproductive isolation in five mirid species[J]. PLoS ONE, 2015, 10(5):e0127051. [20] Smith R F, Pierce H D, Borden J H. Sex pheromone of the mullein bug, Campyloma verbasci (Meyer) (Heteroptera:Miridae)[J]. Journal of Chemical Ecology, 1991, 17(7):1437-1447. [21] Millar J G, Rice R E. Sex pheromone of the plant bug Phytocoris californicus (Heteroptera:Miridae)[J]. Journal of Economic Entomology, 1998, 91(1):132-137. [22] Millar J G, Rice R E, Wang Q. Sex pheromone of the mirid bug Phytocoris relativus (Heteroptera:Miridae)[J]. Journal of Chemical Ecology, 1997, 23(7):1743-1754. [23] Gueldner R C, Parrott W L. Volatile constituents of the tarnished plant bug[J]. Insect Biochemistry and Molecular Biology, 1978, 8(5):389-391. [24] 吴伟坚, 高泽正, 梁广文. 盲蝽科昆虫性信息素研究概况[J]. 应用昆虫学报, 2004, 41(4):299-301. [25] 苏建伟, 陈展册, 张广珠, 等. 绿盲蝽雌虫的浸提物分析[J]. 昆虫知识, 2010, 47(6):1113-1117. [26] Wheeler A G. Biology of the plant bugs (Hemiptera:Miridae):pests, predators, opportunists[M]. Ithaca and London:Comell University Press, 2001, 105-135. [27] 罗静, 张志林, 陈龙佳, 等. 中黑盲蝽羽化节律及交配行为初步研究[J]. 应用昆虫学报, 2012, 49(3):596-600. [28] 泽桑梓, 王海帆, 季梅, 等. 薇甘菊颈盲蝽基础生物学特性[J]. 江苏农业科学, 2017, 45(12):64-69. [29] Franco K, Jauset A, Castane C. Monogamy and polygamy in two species of mirid bugs:A functional-based approach[J]. Journal of Insect Physiology, 2011, 57(2):307-315. [30] Rodriguez S, Rafael L. Male and female mating behavior in two Ozophora bugs (Heteroptera:Lygaeidae)[J]. Journal of the Kansas Entomological Society, 1999, 72(2):137-148. [31] 张涛. 绿盲蝽(Apolygus luscorum)性信息素的提取鉴定及应用研究[D]. 北京:中国农业科学院, 2011. [32] Lowor S T, Socorro A P D, Gregg P C. Sex pheromones of the green mirid, Creontiades dilutus (Hemiptera:Miridae)[J]. International Journal of Agricultural Research, 2009, 4(4):137-145. [33] Fountain M T, Jastad G, Hall D, et al. Further studies on sex pheromones of female Lygus and related bugs:development of effective lures and investigation of species-specificity[J]. Journal of Chemical Ecology, 2014, 40(1):71-83. [34] Drijfhout F P, Van Beek T A, Visser J, et al. On-line thermal desorption-gas chromatography of intact insects for pheromone analysis.[J]. Journal of Chemical Ecology, 2000, 26(6):1383-1392. [35] Byers J A, Fefer D, Levizada A, et al. Sex pheromone component ratios and mating isolation among three Lygus plant bug species of North America[J]. Naturwissenschaften, 2013, 100(12):1115-1123. [36] Innocenzi P J, Hall D, Cross J V, et al. Attraction of male European tarnished plant bug, Lygus rugulipennis to components of the female sex pheromone in the field[J]. Journal of Chemical Ecology, 2005, 31(6):1401-1413. [37] Zhang Q, Aldrich J R. Pheromones of milkweed bugs (Heteroptera:Lygaeidae) attract wayward plant bugs:Phytocoris mirid sex pheromone[J]. Journal of Chemical Ecology, 2003, 29(8):1835-1851. [38] Zhang Q, Aldrich J R. Sex pheromone of the plant bug, Phytocoris calli knight[J]. Journal of Chemical Ecology, 2008, 34(6):719-724. [39] Hanks L M. Influence of the larval host plant on reproductive strategies of cerambycid beetles[J]. Annual Review of Entomology, 1999, 44(1):483-505. [40] Groot A T, Wal E V D, Schuurman A, et al. Copulation behavior of Lygocoris pabulinus under laboratory conditions[J]. Entomologia Experimentalis et Applicata, 1998, 88(3):219-228. [41] John S. The evolution of insect mating systems[J]. The Quarterly Review of Biology, 1984, 59(3):362-363. [42] 刘兴平, 彭接辉, 何海敏, 等. 多次交配对昆虫适应性的影响[J]. 江西农业大学学报, 2008, 30(4):592-600. [43] Arnqvist G, Nilsson T. The evolution of polyandry:multiple mating and female fitness in insects[J]. Animal Behaviour, 2000, 60(2):145-164. [44] Sakurai T. Variation in time to sperm depletion and oviposition patterns in females of Riptortus clavatus (Heteroptera:Alydidae)[J]. Annals of the Entomological Society of America, 1998, 91(5):737-740. [45] Gillott C. Male accessory gland secretions:Modulators of female reproductive physiology and behavior[J]. Annual Review of Entomology, 2003, 48:163-184. [46] Strong F E, Sheldahl J A, Hughes P R, et al. Reproductive biology of Lygus hesperus Knight:Laboratory studies on lygus reproduction[J]. Analytical Biochemistry, 1970, 40(4):133-147. [47] Brent C S. Reproduction of the western tarnished plant bug, Lygus hesperus, in relation to age, gonadal activity and mating status[J]. Journal of Insect Physiology, 2010, 56(1):28-34. [48] Kingan T G, Thomas-Laemont P A, Raina A K. Male accessory gland factors elicit change from ‘virgin’ to ‘mated’ behavior in the female corn earworm moth Helicoverpa zea[J]. Journal of Experimental Biology, 1993, 183(1):61-76. [49] Ayasse M, Engels W, Lubke G, et al. Mating expenditures reduced via female sex pheromone modulation in the primitively eusocial halictine bee, Lasioglossum malachurum (Hymenoptera:Halictidae)[J]. Behavioral Ecology and Sociobiology, 1999, 45(2):95-106. [50] Eliyahu D, Nagalakshmi V, Applebaum S W, et al. Inhibition of pheromone biosynthesis in Helicoverpa armigera by pheromonostatic peptides[J]. Journal of Insect Physiology, 2003, 49(6):569-574. [51] Fukuyama M, Adati T, Higuchi H, et al. Attractiveness of females to males in the rice leaf bug, Trigonotylus caelestialium (Kirkaldy):effect of mating status and age of females[J]. Japanese Journal of Applied Entomology and Zoology, 2007, 51(2):135-137. [52] Oku K, Yasuda T. Effects of age and mating on female sex attractant pheromone levels in the sorghum plant bug, Stenotus rubrovittatus (Matsumura)[J]. Journal of Chemical Ecology, 2010, 36(5):548-552. [53] Fuyama Y, Ueyama M. Ovulation and the suppression of mating in Drosophila melanogaster females:behavioral basis[J]. Behavior Genetics, 1997, 27(5):483-488. [54] Schiestl F P, Ayasse M. Post-mating odor in females of the solitary bee, Andrena nigroaenea (Apoidea, Andrenidae), inhibits male mating behavior[J]. Behavioral Ecology and Sociobiology, 2000, 48(4):303-307. [55] Zhang Q H, Aldrich J R. Male-produced anti-sex pheromone in a plant bug[J]. Naturwissenschaften, 2003, 90(11):505-508. [56] Gilbert L E. Postmating female odor in Heliconius butterflies:a male-contributed antiaphrodisiac[J]. Science, 1976, 193(4251):419-420. [57] Kukuk P. Evidence for an antiaphrodisiac in the sweat bee Lasioglossum (Dialictus) zephyrum[J]. Science, 1985, 227(4687):656-657. [58] Tompkins L, Hall J C. The different effects on courtship of volatile compounds from mated and virgin Drosophila females[J]. Journal of Insect Physiology, 1981, 27(1):17-21 [59] Andersson J, Borg-Karlson A K, Wiklund C. Sexual cooperation and conflict in butterflies:a male transferred anti-aphrodisiac reduces harassment of recently mated females[J]. Proceedings of the Royal Society B:Biological Sciences, 2000, 267(1450):1271-1275. [60] Schulz S, Estrada C, Yildizhan S, et al. An antiaphrodisiac in Heliconius melpomene butterflies[J]. Journal of Chemical Ecology, 2008, 34(1):82-93. [61] Yew J Y, Dreisewerd K, Luftmann H, et al. A new male sex pheromone and novel cuticular cues for chemical communication in Drosophila[J]. Current Biology, 2009, 19(15):1245-1254. [62] Zawistowski S, Richmond R C. Inhibition of courtship and mating of Drosophila Melanogaster by the male produced lipid, cis-vaccenyl acetate[J]. Journal of Insect Physiology, 1986, 32(3):189-192. [63] Krueger S, Moritz G, Lindemann P, et al. Male pheromones influence the mating behavior of Echinothrips americanus[J]. Journal of Chemical Ecology, 2016, 42(4):294-299. [64] Malouines C. Counter-perfume:using pheromones to prevent female remating[J]. Biological Reviews, 2016, 92(3):1570-1581. [65] Forsberg J, Wiklund C. Mating in the afternoon:Time-saving in courtship and remating by females of a polyandrous butterfly Pieris napi L[J]. Behavioral Ecology and Sociobiology, 1989, 25(5):349-356. [66] Magnhagen C. Predation risk as a cost of reproduction[J]. Trends in Ecology and Evolution, 1991, 6(6):183-186. [67] Cook S E, Vernon J G, Bateson M, et al. Mate choice in the polymorphic African swallowtail butterfly, Papilio dardanus:male-like females may avoid sexual harassment[J]. Animal Behaviour, 1994, 47(2):389-397. [68] Den Hollander M, Gwynne D T. Female fitness consequences of male harassment and copulation in seed beetles, Callosobruchus maculatus[J]. Animal Behaviour, 2009, 78(5):1061-1070. [69] Brent C S, Byers J A. Female attractiveness modulated by a male-derived antiaphrodisiac pheromone in a plant bug[J]. Animal Behaviour, 2011, 82(5):937-943. [70] Brent C S, Spurgeon D W. Diapause response of laboratory reared and native Lygus hesperus Knight (Hemiptera:Miridae)[J]. Environmental Entomology, 2011, 40(2):455-461. [71] Brent C S, Fasnacht M P, Judd T M. Post-mating enhancement of fecundity in female Lygus Hesperus[J]. Physiological Entomology, 2011, 36(2):141-148. [72] Brent C S. Reproductive refractoriness in the western tarnished plant bug (Hemiptera:Miridae)[J]. Annals of the Entomological Society of America, 2010, 102(2):300-306. [73] Brent C S, Byers J A, Levi-zada A. An insect anti-antiaphrodisiac[J]. Elife, 2017, 6:e24063. [74] Andersson J, Borgkarlson A, Wiklund C, et al. Antiaphrodisiacs in pierid butterflies:a theme with variation![J]. Journal of Chemical Ecology, 2003, 29(6):1489-1499. [75] Scott D B. Sexual mimicry regulates the attractiveness of mated Drosophila melanogaster females[J]. Proceedings of the National Academy of Sciences of the United States of America, 1986, 83(21):8429-8433. [76] Ejima A, Smith B P, Lucas C, et al. Generalization of courtship learning in Drosophila is mediated by cis-vaccenyl acetate[J]. Current Biology, 2007, 17(7):599-605. [77] Chin J S, Ellis S R, Pham H T, et al. Sex-specific triacylglycerides are widely conserved in Drosophila and mediate mating behavior[J]. Elife, 2014, 3:e01751. [78] Carlson D A, Schlein Y. Unusual polymethyl alkenes in tsetse flies acting as abstinon in Glossina morsitans[J]. Journal of Chemical Ecology, 1991, 17(2):267-284. [79] Ayasse M, Paxton R J, Tengo J, et al. Mating behavior and chemical communication in the order Hymenoptera[J]. Annual Review of Entomology, 2001, 46:31-78. [80] Baer B, Morgan E D, Schmidhempel P, et al. A nonspecific fatty acid within the Bumblebee mating plug prevents females from remating[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(7):3926-3928. [81] Baer B, Boomsma J J. Male reproductive investment and queen mating-frequency in fungus-growing ants[J]. Behavioral Ecology, 2004, 15(3):426-432. [82] Mikheyev A S. Evidence for mating plugs in the fire ant Solenopsis invicta[J]. Insectes Sociaux, 2003, 50(4):401-402. |