[1] 马晓晶, 杨健, 马桂荣, 等. 中药丹参的现代化研究进展[J]. 中国中药杂志, 2022, 47(19): 5131-5139. [2] 杨昌贵, 江维克, 杨野, 等. 中药材生产常见病害及用药特征分析与建议[J]. 中国中药杂志, 2023, 48(11): 2925-2930. [3] 杨立, 陈美兰, 邵爱娟, 等. 生防菌对药用植物土传病害的抗病机制及应用探讨[J]. 中国中药杂志, 2012, 37(21): 3188-3192. [4] 杨瑾, 文艺, 高素霞, 等. 河南产区丹参根腐病病原鉴定[J]. 河南农业科学, 2021, 50(10): 92-98. [5] 王铁霖, 关巍, 孙楷, 等. 丹参常见病害的病原、发病规律及综合防治[J]. 中国中药杂志, 2018, 43(11): 2402-2406. [6] 周莹, 袁孟娟, 韩军, 等. 丹参根腐病生防芽孢杆菌2-1海藻菌剂的研制[J]. 生物技术通报, 2015, 31(1): 167-172. [7] Omar S N, Bakar A S, Bakar A S, et al. Prospects of endophytic fungi as a natural resource for the sustainability of crop production in the modern era of changing climate[J]. Symbiosis, 2022, 89(1): 1-25. [8] 廖长宏, 陈军文, 吕婉婉, 等. 根和根茎类药用植物根腐病研究进展[J]. 中药材, 2017, 40(2): 492-497. [9] 周淑香, 李小宇, 张连学, 等. 6株木霉菌对人参锈腐病的防治效果[J]. 中国生物防治, 2010, 26(S1): 69-72. [10] 李晓雯, 王继红, 王柯坛. 人参病原拮抗菌的筛选及抑菌活性的鉴定[J]. 东北林业大学学报, 2019, 47(9): 91-95. [11] 王飞, 李雪梦, 杨瑾, 等. 3株丹参根际促生细菌的筛选、鉴定及作用评价[J]. 河南农业科学, 2022, 51(12): 81-89. [12] 王飞, 杨瑾, 李绍建, 等. 丹参根腐病菌拮抗菌株贝莱斯芽胞杆菌Bv1-4的筛选及盆栽防效[J]. 中国生物防治学报, 2023, 39(6): 1398-1407. [13] 蒋靖怡, 杜用玺, 孙楷, 等. 丹参根际放线菌Acti-001的生防潜力评估及其鉴定[J]. 中国植保导刊, 2022, 42(12): 5-9. [14] 曾华兰, 叶鹏盛, 李琼芳, 等. 利用木霉防治丹参根腐病的研究[J]. 四川农业大学学报, 2003(2): 142-144. [15] Duan J, Li X, Gao J, et al. Isolation and identification of endophytic bacteria from root tissues of Salvia miltiorrhiza Bge. and determination of their bioactivities[J]. Annals of Microbiology, 2013, 63(4): 1501-1512. [16] Goel A, Sindhu S, Dadarwal K. Stimulation of nodulation and plant growth of chickpea (Cicer arietinum L.) by Pseudomonas spp. antagonistic to fungal pathogens.[J]. Biology and Fertility of Soils, 2002, 36(6): 391-396. [17] 袁梦蕾, 崔明悦, 张子通, 等.丹参根腐病病原菌及其生防菌的筛选[J]. 中国农学通报, 2024, 40(30): 119-127. [18] Ren J H, Ye J R, Liu H, et al. Isolation and characterization of a new Burkholderia pyrrocinia strain JK-SH007 as a potential biocontrol agent[J]. World Journal of Microbiology and Biotechnology, 2011, 27(9): 2203-2215. [19] Nautiyal C S. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms[J]. FEMS Microbiology Letter, 1999, 170(1): 265-270. [20] Wu X, Xie Y, Qiao J, et al. Rhizobacteria strain from a hypersaline environment promotes plant growth of Kengyilia thoroldianat[J]. Microbiology, 2019, 88(2): 220-231. [21] Milagres A M, Machuca A, Napoleão D. Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S(CAS) agar plate assay[J]. Journal of Microbiological Methods, 1999, 37(1): 1-6. [22] 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001. [23] 布坎南, 吉本斯. 伯杰氏细菌鉴定手册[M]. 北京: 科学出版社, 1984. [24] Mahmood S, Freitag T E, Prosser J I. Comparison of PCR primer-based strategies for characterization of ammonia oxidizer communities in environmental samples[J]. FEMS Microbiology Ecology, 2006, 56(3): 482-493. [25] Yamamoto S, Harayama S. PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains[J]. Applied and Environmental Microbiology, 1995: 61(3): 1104-1109. [26] Patten C L, Glick B R. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system[J]. Applied and Environmental Microbiology, 2002, 68(8): 3795-3801. [27] 孙瑞泽. 丹参根腐病生物防治药剂筛选[D]. 杨凌: 西北农林科技大学, 2016. [28] 叶鹏盛, 曾华兰, 江怀仲, 等. 丹参根腐病及其微生物防治研究[J]. 世界科学技术, 2003(2): 63-65, 81. [29] 张春媚, 徐明洁, 李雪威, 等. 绿针假单胞菌的研究进展及农业应用潜力[J]. 微生物学报, 2022, 62(2): 391-402. [30] 宗媛娜, 彭华松, 张雪洪. suhB基因对绿针假单胞菌HT66生防能力的影响[J]. 微生物学通报, 2021, 48(1): 35-45. [31] 黄艺烁, 谢学文, 石延霞, 等. 一株绿针假单胞菌桔黄亚种在防治番茄匍柄霉叶斑病中的应用[J]. 中国生物防治学报, 2021, 37(6): 1265-1275. [32] Zhao X B, Liu X T, Zhao H, et al. Biological control of Fusarium wilt of sesame by Penicillium bilaiae 47M-1[J]. Biological Control, 2021, 158: 104601. [33] 李政, 李林利, 苏姗珊, 等. 广西火龙果茎腐病病原菌的鉴定及生防菌筛选[J]. 热带作物学报, 2024, 45(10): 2162-2170. [34] Antoine Z, Martin F. Pseudomonas spp. can help plants face climate change[J]. Frontiers in Microbiology, 2023, 14: 1198131. [35] 宋秀丽, 赵崇钊, 卓愉林, 等. 绿针假单胞菌桔黄亚种在香蕉枯萎病防治中的应用[J]. 农业资源与环境学报, 2025, 42(1): 206-217. [36] Neal A L, Ton J. Systemic defense priming by Pseudomonas putida KT2440 in maize depends on benzoxazinoid exudation from the roots[J]. Plant Signaling & Behavior, 2013, 8(1): 120-124. [37] Laursen J B, Nielsen J. Phenazine natural products: biosynthesis, synthetic analogues, and biological activity[J]. Chemical Reviews, 2004, 104(3): 1663-1686. [38] 张平原, 彭华松, 沈雪梅, 等. 高产吩嗪-1-甲酰胺的绿针假单胞菌的诱变与基因工程育种[J]. 上海交通大学学报(农业科学版), 2015, 33(2): 90-94. [39] 张清霞, 何玲玲, 单海焕, 等. 桃褐腐病生防细菌FD6硝吡咯菌素合成基因簇的克隆及prnA功能分析[J]. 园艺学报, 2016, 43(8): 1473-1481. [40] 张力群, 张俊威. 假单胞菌产生的抗生素[J]. 中国生物防治学报, 2015, 31(5): 750-756. [41] Darwesh O M, Barakat K M, Mattar M Z. Production of antimicrobial blue green pigment pyocyanin by marine Pseudomonas aeruginosa[J]. Biointerface Research in Applied Chemistry, 2019, 9(5): 4334-4339. [42] Hamad M N F, Marrez D A, El-Sherbieny S M R. Toxicity evaluation and antimicrobial activity of purified pyocyanin from Pseudomonas aeruginosa[J]. Biointerface Research in Applied Chemistry, 2020, 10(6): 6974-6990. [43] Thrane C, Nielsen M N, Sørensen J, et al. Pseudomonas fluorescens DR54 reduces sclerotia formation, biomass development, and disease incidence of Rhizoctonia solani causing damping-off in sugar beet[J]. Microbial Ecology, 2001, 42(3): 438-445. [44] Haas D, Keel C, Laville J, et al. Secondary metabolites of Pseudomonas fluorescens strain CHA0 involved in the suppression of root diseases[J]. Springer Netherlands, 1991(1): 450-456. |