[1] Jacob S, Sajjalaguddam R R, Sudini H K, et al. RP1A-12 mediated control of peanut stem rot caused by Sclerotium rolfsii[J]. Journal of integrative agriculture, 2018, 17(4): 892-900. [2] Han Z,Cui K,Wang M, et al. Bioactivity of DMI fungicide mefentrifluconazole against Sclerotium rolfsii, the causal agent of peanut southern blight[J]. Pest Management Science, 2023, 79(6): 2126-2134. [3] 孙海燕, 万书波, 李林, 等. 我国花生生产区域比较优势分析[J]. 中国油脂, 2014, 39(6): 6-11. [4] 张立伟, 王辽卫. 我国花生产业发展状况、存在问题及政策建议[J]. 中国油脂, 2020, 45(11): 116-122. [5] 陈坤荣, 任莉, 徐理, 等. 花生白绢病研究进展[J]. 中国油料作物学报, 2018, 40(2): 302-308. [6] 于东洋, 晏立英, 宋万朵, 等. 花生白绢病病原菌致病力分化的研究进展[J]. 中国油料作物学报, 2022, 44(5): 930-936. [7] 付静, 付伟, 仁众, 等. 5种杀菌剂对花生白绢病菌的室内毒力与田间防病效果[J]. 中国植保导刊, 2022, 42(7): 82-85. [8] 杨珊. 绿针假单胞菌zm-1生物防治花生白绢病的作用机理研究[D]. 郑州: 河南大学, 2022. [9] 李佳昕, 蔡晨亮, 王琰, 等. 棘胞木霉菌鉴定及其对花生白绢病生防机制的研究[J]. 中国生物防治学报, 2022, 38(6): 1534-1544. [10] Rabbee M F, Ali M S, Choi J, et al. Bacillus velezensis: a valuable member of bioactive molecules within plant microbiomes[J]. Molecules, 2019, 24(6): 1046. [11] Chandrashekar B S, Prasannakumar M K, Venkateshbabu Gopal, et al. Bacillus velezensis (strains A6& P42) as a potential biocontrol agent against Klebsiella variicola, a new causal agent of soft rot disease in carrot[J]. Letters in Applied Microbiology, 2023, 76(1): ovac029. [12] 彭启超, 黄德龙, 张志鹏, 等. 贝莱斯芽孢杆菌DPT-03对花生白绢病菌的防控效果[J]. 河南农业科学, 2022, 51(2): 97-103. [13] Zhao J, Zhou Z, Bai X, et al. A novel of new class II bacteriocin from Bacillus velezensis HN-Q-8 and its antibacterial activity on Streptomyces scabies[J]. Frontiers in Microbiology, 2022, 13: 943232. [14] 赵艳丽, 郭立, 惠祥海, 等. 微生物菌剂拌种对花生土传病害的防治效果及产量影响[J]. 中国生物防治学报, 2021, 37(6): 1250-1255. [15] Liu H Y, Zeng Q C, Yalimaimaiti N, et al. Comprehensive genomic analysis of Bacillus velezensis AL7 reveals its biocontrol potential against Verticillium wilt of cotton[J]. Molecular Genetics and Genomics, 2021, 296: 1287-1298. [16] 方园, 彭勇政, 廖长贵, 等. 一株具有防病促生功能的贝莱斯芽孢杆菌SF327[J]. 微生物学报, 2022, 62(10): 4071-4088. [17] Han X S, Shen D X, Xiong Q, et al. The plant–beneficial rhizobacterium Bacillus velezensis FZB42 controls the soybean pathogen Phytophthora sojae due to bacilysin production[J]. Applied and Environmental Microbiology, 2021, 87(23): e0160121. [18] Shi Z, Hong W, Wang Q. Complete genome resource of Bacillus velezensis J17-4, an endophyte isolated from stem tissues of rice[J]. Plant Disease, 2022, 106(2): 727-729. [19] Xu W, Yang Q, Xie X, et al. Genomic and phenotypic insights into the potential of Bacillus subtilis YB-15 isolated from rhizosphere to biocontrol against crown rot and promote growth of wheat[J]. Biology, 2022, 11(5): 778. [20] Yin X, Li T, Jiang X, et al. Suppression of grape white rot caused by Coniella vitis using the potential biocontrol agent Bacillus velezensis GSBZ09[J]. Pathogens, 2022, 11(2): 248. [21] Pei Y X, Zhao S, Chen X, et al. Bacillus velezensis EEAM 10B strengthens nutrient metabolic process in black soldier fly larvae (Hermetia illucens) via changing gut microbiome and metabolic pathways[J]. Frontiers in Nutrition, 2022, 9: 880488. [22] 潘梦诗,郭文阳,张宗源,等.贝莱斯芽孢杆菌对花生白绢病的防治效果[J]. 生物学杂志, 2022, 39(1): 37-41. [23] Luo L, Zhao C, Wang E, et al. Bacillus amyloliquefaciens as an excellent agent for biofertilizer and biocontrol in agriculture: An overview for its mechanisms[J]. Microbiological Research, 2022, 259: 127016. [24] Zaid D S, Cai S, Hu C, et al. Comparative genome analysis reveals phylogenetic identity of Bacillus velezensis HNA3 and genomic insights into its plant growth promotion and biocontrol effects[J]. Microbiology Spectrum, 2022, 10(1): e02169-21. [25] 朱信霖, 扈东营, 陈显振, 等. 作用于细胞壁的抗真菌药物研究进展[J]. 菌物学报, 2022, 41(6): 871-877. [26] Chen L, Wang X H, Liu Y P. Contribution of macrolactin in Bacillus velezensis CLA178 to the antagonistic activities against Agrobacterium tumefaciens C58[J]. Archives of Microbiology, 2021, 203(4): 1-10. [27] 李铮, 王金辉, 丁丽丽, 等. 贝莱斯芽孢杆菌菌株NZ-4生防潜能及基因组学分析[J]. 江苏农业科学, 2023, 51(2): 117-125. [28] 李小杰, 邱睿, 刘畅, 等. 基于全基因组测序的贝莱斯芽孢杆菌Ba-0321抑菌机制分析及相关功能验证[J]. 中国生物防治学报, 2023, 39(4): 885-894. [29] Wang Y, Zhang C, Liang J, et al. Surfactin and fengycin B extracted from Bacillus pumilus W-7 provide protection against potato late blight via distinct and synergistic mechanisms[J]. Applied Microbiology and Biotechnology, 2020, 104(17): 7467-7481. [30] Han X, Shen D, Xiong Q, et al. The plant-beneficial rhizobacterium Bacillus velezensis FZB42 controls the soybean pathogen Phytophthora sojae due to bacilysin production[J]. Applied and Environmental Microbiology, 2021, 87(23): e0160121. [31] Gu S, Wei Z, Shao Z, et al. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes[J]. Nature Microbiology, 2020, 5(8): 1002-1010. [32] Dimopoulou A, Theologidis I, Benaki D, et al. Directantibiotic activity of bacillibactin broadens the biocontrol range of Bacillus amyloliquefaciens MBI600[J]. mSphere, 2021, 6(4): e0037621. [33] Cui K, Xu T, Chen J, et al. Siderophores, a potential phosphate solubilizer from the endophyte Streptomyces sp. CoT10, improved phosphorus mobilization for host plant growth and rhizosphere modulation[J]. Journal of Cleaner Production, 2022, 367: 133110. [34] Arnison P G , Bibb M J , Bierbaum G. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature[J]. Natural Product Reports, 2013, 30(1): 108-160. [35] Wu J J, Chou H P, Huang J W, et al. Genomic and biochemical characterization of antifungal compounds produced by Bacillus subtilis PMB102 against Alternaria brassicicola[J]. Microbiological Research, 2021, 251: 126815. [36] 郭佳, 王娉, 周继福, 等. 乳源蜡样芽胞杆菌耐药性、毒力因子检测及分子特征研究[J]. 中国农业科技导报, 2022, 13(11): 131-138. |