[1] Cohen A C. Insect Diets: Science and Technology[M]. Boca Raton: CRC Press, 2003. [2] Riddick E W. Benefits and limitations of factitious prey and artificial diets on life parameters of predatory beetles, bugs, and lacewings: a mini-review[J]. BioControl, 2009, 54: 325-339. [3] Sun Y X, Hao Y N, Riddick E W, et al. Factitious prey and artificial diets for predatory lady beetles: current situation, obstacles, and approaches for improvement: a review[J]. Biocontrol Science and Technology, 2017, 27: 601-619. [4] 方杰, 朱麟, 杨振德, 等. 昆虫人工饲料配方研究概况及问题探讨[J]. 四川林业科技, 2003, 24(4): 18-26. [5] Lundgren J G. Nutritional aspects of non-prey foods in the life histories of predaceous Coccinellidae[J]. Biological Control, 2009, 51: 294-305. [6] Stanley R G, Linskins H F. Pollen: Biology, Biochemistry, Management[M]. New York: Springer-Verlag, 1974. [7] Cocuzza G, De Clercq P, Van De Veire M, et al. Reproduction of Orius laevigatus and Orius albidipennis on pollen and Ephestia kuehniella eggs[J]. Entomologia Experimentalis et Applicata, 1997, 82(1): 101-104. [8] Schuldiner-Harpaz T, Coll M. Estimating the effect of plant-provided food supplements on pest consumption by omnivorous predators: lessons from two coccinellid beetles[J]. Pest Management Science, 2017, 73: 976-983. [9] De Clercq P, Bonte M, Van Speybroeck K, et al. Development and reproduction of Adalia bipunctata (Coleoptera: Coccinellidae) on eggs of Ephestia kuehniella (Lepidoptera: Phycitidae) and pollen[J]. Pest Management Science, 2005, 61: 1129-1132. [10] 伍兴隆, 刘东阳, 王勇, 等. 不同种类花粉对七星瓢虫幼虫发育的影响[J]. 中国植保导刊, 2020, 40(12): 10-14, 22. [11] Zhang X J, Li Y H, Romeis J, et al. Use of a pollen-based diet to expose the ladybird beetle Propylea japonica to insecticidal proteins[J]. PLoS ONE, 2014, 9(1): e85395. [12] 杜雪勇, 李浩森, 陈培涛, 等. 饲养瓢虫的替代食物: 利用地中海粉螟卵与油菜花粉连续多代饲喂稻红瓢虫[J]. 环境昆虫学报, 2021, 43(2): 305-304. [13] Koch R L. The multicolored Asian lady beetle, Harmonia axyridis: a review of its biology, uses in biological control, and non-target impacts[J]. Journal of Insect Science, 2003, 3: 1-16. [14] 王甦, 张润志, 张帆. 异色瓢虫生物生态学研究进展[J]. 应用生态学报, 2007, 18(9): 2117-2126. [15] Roy H E, Brown P M, Adriaens T, et al. The harlequin ladybird, Harmonia axyridis: global perspectives on invasion history and ecology[J]. Biological Invasions, 2016, 18: 997-1044. [16] Ricupero M, Dai C C, Siscaro G, et al. Potential diet regimens for laboratory rearing of the harlequin ladybird[J]. BioControl, 2020, 65(5): 583-592. [17] Lundgren J G, Razzak A A, Wiedenmann R N. Population responses and food consumption by predators Coleomegilla maculata and Harmonia axyridis (Coleoptera: Coccinellidae) during anthesis in an Illinois cornfield[J]. Environmental Entomology, 2004, 33: 958-963. [18] Wolf S, Romeis J, Collatz J. Utilization of plant-derived food sources from annual flower strips by the invasive harlequin ladybird Harmonia axyridis[J]. Biological Control, 2018, 122: 118-126. [19] Yang K, Wu D, Ye X Q, et al. Characterization of chemical composition of bee pollen in China[J]. Journal of Agricultural and Food Chemistry, 2013, 61(3): 708-718. [20] Prescott K K, Andow D A. Lady beetle (Coleoptera: Coccinellidae) communities in soybean and maize[J]. Environmental Entomology, 2016, 45(1): 74-82. [21] Ferran A, Niknam H, Kabiri F, et al. The use of Harmonia axyridis larvae (Coleoptera: Coccinellidae) against Macrosiphum rosae (Hemiptera: Sternorrhyncha: Aphididae) on rose bushes[J]. European Journal of Entomology, 1996, 93: 59-67. [22] Sun Y X, Hao Y N, Liu T X. A β-carotene-amended artificial diet increases larval survival and be applicable in mass rearing of Harmonia axyridis[J]. Biological Control, 2018, 123: 105-110. [23] Sun Y X, Hao Y N, Zhou J J, et al. Effects of long-term cold storage on maternal and progeny fitness of laboratory-reared Harmonia axyridis adults[J]. BioControl, 2022, 67: 395-405. [24] Morales-Ramos J A, Rojas M G, Coudron T A. Artificial diet development for entomophagous arthropods//Morales-Ramos J A, Rojas M G, Shapiro-Ilan D I. Mass Production of Beneficial Organisms: Invertebrates and Entomopathogens[M]. New York: Elsevier, 2014, 203-240. [25] Khanamani M, Fathipour Y, Talebi A A, et al. Evaluation of different artificial diets for rearing the predatory mite Neoseiulus californicus (Acari: Phytoseiidae): diet-dependent life table studies[J]. Acarologia, 2017, 57(2): 407-419. [26] Damos P, Papadopoulos N, Rigas A, et al. Energetic loads and informational entropy during insect metamorphosis: measuring structural variability and self-organization[J]. Journal of Theoretical Biology, 2011, 286: 1-12. [27] Atrouse O M, Oran O M, Al-Abbadi S Y. Chemical analysis and identification of pollen grains from different Jordanian honey samples[J]. International Journal of Food Science and Technology, 2004, 39: 413-417. [28] Lundgren J G, Wiedenmann R N. Nutritional suitability of corn pollen for the predator Coleomegilla maculata (Coleoptera: Coccinellidae)[J]. Journal of Insect Physiology, 2004, 50(6): 567-575. [29] Patt L M, Wainright S C, Hamilton G C, et al. Assimilation of carbon and nitrogen from pollen and nectar by a predaceous larva and its effects on growth and development[J]. Ecological Entomology, 2003, 28: 717-728. [30] Berkvens N, Bonte J, Berkvens D, et al. Pollen as an alternative food for Harmonia axyridis[J]. BioControl, 2008, 53: 201-210. [31] Sighinolfi L, Febvay G, Dindo M L, et al. Biological and biochemical characteristics for quality control of Harmonia axyridis (Pallas) (Coleoptera, Coccinellidae) reared on a liver-based diet[J]. Archives of Insect Biochemistry and Physiology, 2008, 68: 26-39. [32] Chen P, Liu J, Chi B, et al. Effect of different diets on the growth and development of Harmonia axyridis (Pallas)[J]. Journal of Applied Entomology, 2020, 144(10): 911-919. |