[1] Xie Y X, Wright, S, Shen Y M, et al. Bioactive natural products from Lysobacter[J]. Natural Product Reports, 2012, 29: 1277-1287. [2] Yue H, Miller A L, Khetrapal V, et al. Biosynthesis, regulation, and engineering of natural products from Lysobacter[J]. Natural Product Reports, 2022, 39(4): 842-874. [3] Zhao Y Y, Jiang T P, Xu H Y, et al. Characterization of Lysobacter spp. strains and their potential use as biocontrol agents against pear anthracnose[J]. Microbiological Research, 2021, 242: 126624. [4] Zhao Y Y, Qian G L, Ye Y H, et al. Heterocyclic aromatic N-oxidation in the biosynthesis of phenazine antibiotics from Lysobacter antibioticus[J]. Organic Letters 2016, 18: 2495-2498. [5] Chowdhury G, Sarkar U, Pullen S, et al. DNA strand cleavage by the phenazine di-N-oxide natural product myxin under both aerobic and anaerobic conditions[J]. Chemical Research in Toxicology, 2012, 25: 197-206. [6] Zhang N F, Dong Y, Zhou H L, et al. Effect of PAS-LuxR Family Regulators on the Secondary Metabolism of Streptomyces[J]. Antibiotics (Basel), 2022, 11(12): 1783. [7] Wei Q, Aung A, Liu B, et al. Overexpression of wysR gene enhances wuyiencin production in DeltawysR3 mutant strain of Streptomyces albulus var. wuyiensis strain CK-15[J]. Applied Microbiology, 2020, 129: 565-574. [8] Vicente C M, Santos-Aberturas J, Payero T D, et al. PAS-LuxR transcriptional control of filipin biosynthesis in S. avermitilis[J]. Applied Microbiology Biotechnology, 2014, 98: 9311-9324. [9] Antón N, Santos-Aberturas J, Mendes M V, et al. PimM, a PAS domain positive regulator of pimaricin biosynthesis in Streptomyces natalensis[J]. Microbiology (Reading), 2007, 153(Pt 9): 3174-3183. [10] McLean T C, Hoskisson P A, Seipke R F. Coordinate regulation of antimycin and candicidin biosynthesis[J]. mSphere, 2016, 1(6): e00305-16. [11] Laursen J B. and Nielsen J. Phenazine Natural Products: biosynthesis, synthetic analogues, and biological activity[J]. Chemical Reviews, 2004, 104: 1663-1685. [12] Guttenberger N, Blankenfeldt W, Breinbauer R. Recent developments in the isolation, biological function, biosynthesis, and synthesis of phenazine natural products[J]. Bioorganic & Medicinal Chemistry, 2017, 25: 6149-6166. [13] 方运玲, 孙爽, 申阅, 等. 微生物源农药申嗪霉素的研制与应用[J]. 农药学学报, 2014, 16(4): 387-393. [14] Mfuh A M, Larionov O V. Heterocyclic N-oxides-An emerging class of therapeutic agents[J]. Current Medicinal Chemistry, 2015, 22(24): 2819-2857. [15] Peterson E, Kaur P. Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens[J]. Frontiers in Microbiology, 2018, 9: 2928. [16] Zhao Y Y, Liu J Y, Jiang T P, et al. Resistance-nodulation-division efflux pump, LexABC, contributes to self-resistance of the phenazine di-N-oxide natural product myxin in Lysobacter antibioticus[J]. Frontiers in Microbiology, 2021, 12: 618513. [17] Liu J Y, Zhao Y Y, Fu Z Q, et al. Monooxygenase LaPhzX is involved in self-resistance mechanisms during the biosynthesis of N-oxide phenazine myxin[J]. Journal of Agricultural Food and Chemistry, 2021, 69(45): 13524-13532. [18] Zhao Y Y, Xu G G, Xu Z Z, et al. LexR positively regulates the LexABC efflux pump involved in self-resistance to the antimicrobial di-N-oxide phenazine in Lysobacter antibioticus[J]. Microbiology Spectrum, 2023, 11(3): e0487222. [19] Vicente C M, Payero T D, Rodríguez-García A, et al. Modulation of multiple gene clusters’ expression by the PAS-LuxR transcriptional regulator PteF[J]. Antibiotics, 2022, 11: 994. [20] Barreales E G, Vicente C M, de Pedro A, et al. Promoter engineering reveals the importance of heptameric direct repeats for DNA binding by Streptomyces antibiotic regulatory proteinlarge ATP-binding regulator of the LuxR family (SARP-LAL) regulators in Streptomyces natalensis[J]. Applied Environmental Microbiology, 2018, 84: e246-18. [21] Yang J, Xu D, Yu W, et al. Regulation of aureofuscin production by the PAS-LuxR family regulator AurJ3M[J]. Enzyme and Microbial Technology, 2020, 137: 109532. [22] Martínez-Burgo Y, Santos-Aberturas J, Rodríguez-García A, et al. Activation of secondary metabolite gene clusters in Streptomyces clavuligerus by the PimM regulator of Streptomyces natalensis[J]. Frontiers in Microbiology, 2019, 10: 580. [23] Yao T T, Liu Z Z, Li T. et al. Characterization of the biosynthetic gene cluster of the polyene macrolide antibiotic reedsmycins from a marinederived Streptomyces strain[J]. Microbial Cell Factories, 2018, 17: 98. |