[1] 时曼丽,袁璋,马吉坡,等. 河南省假禾谷镰孢菌引起的小麦茎基腐病发生与防治研究进展[J]. 农业科技通讯, 2024, 11(0): 129- 131. [2] 李怡文, 李桂香, 黄中乔, 等. 假禾谷镰孢引起的小麦茎基腐病发生危害与防控研究进展[J]. 农药学学报, 2022, 24(5): 949- 961. [3] 刘国霞, 谭晴晴, 齐军山, 等. 基于EF-1α序列位点特异性PCR快速鉴定小麦茎基腐病优势病原菌假禾谷镰孢菌[J]. 农业生物技术学报, 2021, 29(5):985- 994. [4] 高飞, 谢源, 潘鑫, 等. 2019—2020年河南省小麦茎基腐病病原菌鉴定及致病力测定[J]. 植物保护学报, 2023, 50(2):298- 305. [5] Yang X, Pan Y, Singh PK, et al. Investigation and genome-wide association study for Fusarium crown rot resistance in Chinese common wheat[J]. BMC Plant Biology, 2019, 19(1):153. [6] 付燕子, 朱运启, 王峭, 等. 小麦茎基腐病防治药剂及抗病品种的筛选[J]. 植物保护学报, 2024, 51(2): 324-333. [7] 李小虎, 伍强强, 房欢欢, 等. 小麦茎基腐病防治药剂大田筛选试验[J]. 现代农业科技, 2022, (21): 109-112. [8] Nelson R, Wiesner-Hanks T, Wisser R, et al. Navigating complexity to breed disease-resistant crops[J]. Nature Reviews Genetics, 2018, 19(1): 21-33. [9] Xu W, Yang Q, Xie X, et al. Genomic and Phenotypic Insights into the Potential of Bacillus subtilis YB-15 Isolated from Rhizosphere to Biocontrol against Crown Rot and Promote Growth of Wheat[J]. Biology, 2022, 11(5): 778. [10] 张强, 吴利民, 李朋燕, 等. 小麦茎基腐病拮抗菌发酵条件优化及稳定性评价[J]. 河南农业科学, 2023, 52(5): 121-129. [11] 陈婧, 王彤彤, 马青, 等. 生防链霉菌YC2-3的筛选, 鉴定及其对小麦茎基腐病的防治效果[J]. 植物病理学报, 2023, 53(3): 473- 484. [12] 林琪童, 杨丽荣, 夏明聪, 等. 小麦茎基腐病生防菌株YB-16的分离鉴定及防效测定[J]. 植物保护学报, 2020, 47(4): 939-948. [13] Lane D J. 16S/23S rRNA Sequencing[M]// Stackebrandt E, Goodfellow M(eds). Nucleic Acid Techniques in Bacterial Systematics. New York: John Wiley and Sons, 1991, 115-147. [14] 吴际, 朱晓峰, 王媛媛, 等. 生防细菌Sneb2010的鉴定及其对甜瓜枯萎病的防治效果研究[J]. 中国生物防治学报, 2024, 40(6): 1331-1346. [15] Sudhir K, Glen S, Michael L, et al. Molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology & Evolution, 2018, 35(6): 1547-1549. [16] Schwyn B, Neilands J B. Universal chemical assay for the detection and determination of siderophores[J]. Analytical Biochemistry, 1987, 160(1): 47-56. [17] Glickmann E, Dessaux Y. A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria[J]. Applied and Environmental Microbiology, 1995, 61(2): 793-796. [18] Chen Q, Liu S. Identification and characterization of the phosphate-solubilizing bacterium Pantoea sp. S32 in reclamation soil in Shanxi, China[J]. Frontiers in Microbiology, 2019, 10: 2171. [19] Teather R M, Wood P J: Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen[J]. Applied and Environmental Microbiology,1982, 43(4): 777-780. [20] Beg QK, Bhushan B, Kapoor M, et al. Production and characterization of thermostable xylanase and pectinase from Streptomyces sp. QG-11-3[J]. Journal of Industrial Microbiology and Biotechnology, 2000, 24(6): 396-402. [21] Gonfa T G, Negessa A K, Bulto A O. Isolation, screening, and identification of chitinase-producing bacterial strains from riverbank soils at Ambo, Western Ethiopia[J]. Heliyon, 2023, 9(11): e21643. [22] Al-Naamani L S H, Dobretsov S, Al-Sabahi J, et al. Identification and characterization of two amylase producing bacteria Cellulosimicrobium sp. and Demequina sp. isolated from marine organisms[J]. Journal of Agricultural and Marine Sciences, 2015, 2: 8-15. [23] Kazanas N. Proteolytic activity of microorganisms isolated from freshwater fish[J]. Applied microbiology,1968, 16(1): 128-132. [24] Ullah H, Yasmin H, Mumtaz S, et al. Multitrait Pseudomonas spp. isolated from monocropped wheat (Triticum aestivum) Suppress Fusarium root and crown rot[J]. Phytopathology 2020, 110: 582-592. [25] Abu El Samen F M, Alsawalha I, Alananbeh KM, et al. Evaluation of endophytic bacteria from durum wheat on Fusarium root and crown rot disease (Fusarium culmorum) under drought stress[J]. Agronomy, 2024, 14(12): 2912. [26] Qin Z, Yu S, Zhang K, et al. Characterization of a glycoside hydrolase family 157 endo-β-1,3-glucanase that displays antifungal activity against phytopathogens[J]. Journal of Agricultural and Food Chemistry, 2023, 71(27): 10383-10392. [27] Yi Y, Luan P, Fan M, et al. Antifungal efficacy of Bacillus amyloliquefaciens ZK-9 against Fusarium graminearum and analysis of the potential mechanism of its lipopeptides[J]. International Journal of Food Microbiology, 2024, 422: 110821. [28] Nargotra P, Vaid S, Bajaj B K. Cellulase Production from Bacillus subtilis SV1 and its application potential for saccharification of ionic liquid pretreated pine needle biomass under one pot consolidated bioprocess[J]. Fermentation, 2016, 2(4): 19. [29] Miljaković D, Marinković J, Balešević-Tubić S. The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops[J]. Microorganisms, 2020, 8(7): 1037. [30] Xu X, Yu T F, Wei J T, et al. TaWRKY24 integrates the tryptophan metabolism pathways to participate in defense against Fusarium crown rot in wheat[J]. The Plant Journal, 2024, 120(5): 1764-1785. [31] Wang Z, Zhang H, Liu L, et al. Screening of phosphate-solubilizing bacteria and their abilities of phosphorus solubilization and wheat growth promotion[J]. BMC Microbiology, 2022, 22(1): 296. [32] Gu S, Wei Z, Shao Z, et al. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes[J]. Nature microbiology, 2020, 5(8): 1002-1010. |