[1] 联合国粮食及农业组织. https://www.fao.org/home/zh. [2] Than P P, Jeewon R, Hyde K D, et al. Characterization and pathogenicity of Colletotrichum species associated with anthracnose on chilli (Capsicum spp.) in Thailand[J]. Plant Pathology, 2008, 57(3): 562-572. [3] Damm U, Cannon P F, Liu F, et al. The Colletotrichum orbiculare species complex: Important pathogens of field crops and weeds[J]. Fungal Diversity, 2013, 61: 29-59. [4] Dean R, Van Kan J A L, Pretorius Z A, et al. The top 10 fungal pathogens in molecular plant pathology[J]. Molecular Plant Pathology, 2012, 13(4): 414-430. [5] Diao Y Z, Zhang C, Liu F, et al. Colletotrichum species causing anthracnose disease of chili in China[J]. Persoonia-Molecular Phylogeny and Evolution of Fungi, 2017, 38(1): 20-37. [6] Miliute I, Buzaite O, Baniulis D, et al. Bacterial endophytes in agricultural crops and their role in stress tolerance: a review[J]. Zemdirbyste Agriculture, 2015, 102(4): 465-478. [7] Zheng Y K, Qiao X G, Miao C P, et al. Diversity, distribution and biotechnological potential of endophytic fungi[J]. Annals of Microbiology, 2016, 66: 529-542. [8] Nguyen A D, Wang S L, Trinh T H T, et al. Plant growth promotion and fungal antagonism of endophytic bacteria for the sustainable production of black pepper (Piper nigrum L.)[J]. Research on Chemical Intermediates, 2019, 45: 5325-5339. [9] Algam S A, Xie G L, Coosemans J. Delivery methods for introducing endophytic Bacillus into tomato and their effect on growth promotion and suppression of tomato wilt[J]. Plant Pathology Journal, 2005, 4: 69-74. [10] Zheng X, Zhou M, Yoo H, et al. Spatial and temporal regulation of biosynthesis of the plant immune signal salicylic acid[J]. Proceedings of the National Academy of Sciences, 2015, 112(30): 9166-9173. [11] Chowdhury S P, Hartmann A, Gao X W, et al. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42-a review[J]. Frontiers in Microbiology, 2015, 6: 780. [12] Kai M. Diversity and distribution of volatile secondary metabolites throughout Bacillus subtilis isolates[J]. Frontiers in Microbiology, 2020, 11: 559. [13] Zhao P, Li P, Wu S, et al. Volatile organic compounds (VOCs) from Bacillus subtilis CF-3 reduce anthracnose and elicit active defense responses in harvested litchi fruits[J]. AMB Express, 2019, 9: 119. [14] Wu S, Wu S. Processivity and the mechanisms of processive endoglucanases[J]. Applied Biochemistry and Biotechnology, 2020, 190(2): 448-463. [15] Fukamizo T. Chitinolytic enzymes catalysis, substrate binding, and their application[J]. Current Protein and Peptide Science, 2000, 1(1): 105-124. [16] Onaga S, Taira T. A new type of plant chitinase containing LysM domains from a fern (Pteris ryukyuensis): roles of LysM domains in chitin binding and antifungal activity[J]. Glycobiology, 2008, 18(5): 414-423. [17] Bonmatin J M, Laprévote O, Peypoux F. Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activity-structure relationships to design new bioactive agents[J]. Combinatorial Chemistry & High Throughput Screening, 2003, 6(6): 541-556. [18] Buchoux S, Lai-Kee-Him J, Garnier M, et al. Surfactin-triggered small vesicle formation of negatively charged membranes: a novel membrane-lysis mechanism[J]. Biophysical Journal, 2008, 95(8): 3840-3849. [19] Maget-Dana R, Peypoux F. Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties[J]. Toxicology, 1994, 87(1-3): 151-174. [20] Deleu M, Paquot M, Nylander T. Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model biomembranes[J]. Biophysical Journal, 2008, 94(7): 2667-2679. [21] Yamamoto S, Shiraishi S, Suzuki S. Are cyclic lipopeptides produced by Bacillus amyloliquefaciens S13-3 responsible for the plant defence response in strawberry against Colletotrichum gloeosporioides?[J]. Letters in Applied Microbiology, 2015, 60(4): 379-386. [22] Cao S, Zheng Y, Yang Z, et al. Effect of methyl jasmonate on the antifungal activity of Colletotrichum acutatum infection in loquat fruit and the possible mechanisms[J]. Postharvest Biology and Technology, 2008, 49(2): 301-307. [23] Ghorbanpour M, Omidvari M, Abbaszadeh-Dahaji P, et al. Mechanisms underlying the protective effects of beneficial fungi against plant diseases[J]. Biological Control, 2018, 117: 147-157. [24] Xu S, Liu Y X, Cernava T, et al. Fusarium fruiting body microbiome member Pantoea agglomerans inhibits fungal pathogenesis by targeting lipid rafts[J]. Nature Microbiology, 2022, 7(6): 831-843. [25] Ren L, Zhou J, Yin H, et al. Antifungal activity and control efficiency of endophytic Bacillus velezensis ZJ1 strain and its volatile compounds against Alternaria solani and Botrytis cinerea[J]. Journal of Plant Pathology, 2022, 104(2): 575-589. [26] Gao Z F, Zhang B J, Liu H P, et al. Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea[J]. Biological Control, 2017, 105: 27-39. [27] 马东丽, 刘晓峰, 任璐, 等. 醉鱼草内生细菌ZJ1生防机制初探[J]. 山西农业科学, 2021, 49(5): 634-638. [28] 高振峰. 内生细菌ZSY-1对番茄灰霉病和早疫病的防治及促生效果研究[D]. 太原: 山西农业大学, 2018. [29] 国家质量技术监督局. GB/T 17980.33-2000. 农药田间药效试验准则(一)杀菌剂防治辣椒炭疽病[S]. 北京: 中国标准出版社, 2000. [30] Gauvry E, Mathot A G, Couvert O, et al. Effects of temperature, pH and water activity on the growth and the sporulation abilities of Bacillus subtilis BSB1[J]. International Journal of Food Microbiology, 2021, 337: 108915. [31] Xing Y X, Wei C Y, Mo Y, et al. Nitrogen-fixing and plant growth-promoting ability of two endophytic bacterial strains isolated from sugarcane stalks[J]. Sugar Technology, 2016, 18: 373-379. [32] Tilocca B, Cao A, Migheli Q. Scent of a killer: microbial volatilome and its role in the biological control of plant pathogens[J]. Frontiers in Microbiology, 2020, 11: 509409. [33] Audrain B, Farag M A, Ryu C M, et al. Role of bacterial volatile compounds in bacterial biology[J]. FEMS Microbiology Reviews, 2015, 39(2): 222-233. [34] Schmidt R, Cordovez V, De Boer W, et al. Volatile affairs in microbial interactions[J]. The ISME Journal, 2015, 9(11): 2329-2335. [35] Li X, Wang X, Shi X, et al. Antifungal effect of volatile organic compounds from Bacillus velezensis CT32 against Verticillium dahliae and Fusarium oxysporum[J]. Processes, 2020, 8(12): 1674. [36] Choub V, Won S J, Ajuna H B, et al. Antifungal activity of volatile organic compounds from Bacillus velezensis CE 100 against Colletotrichum gloeosporioides[J]. Horticulturae, 2022, 8(6): 557. [37] Liu Y, Liu J, Liu M, et al. Comparative non-targeted metabolomic analysis reveals insights into the mechanism of rice yellowing[J]. Food chemistry, 2020, 308: 125621. [38] Kalinger R S, Pulsifer I P, Hepworth S R, et al. Fatty acyl synthetases and thioesterases in plant lipid metabolism: diverse functions and biotechnological applications[J]. Lipids, 2020, 55(5): 435-455. [39] Bita C, Gerats T. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops[J]. Frontiers in Plant Science, 2013, 4: 273. [40] Chowdhury S K, Dutta T, Chattopadhyay A P, et al. Isolation of antimicrobial Tridecanoic acid from Bacillus sp. LBF-01 and its potentialization through silver nanoparticles synthesis: a combined experimental and theoretical studies[J]. Journal of Nanostructure in Chemistry, 2021, 11: 573-587. [41] Wadsworth J M, Clarke D J, McMahon S A, et al. The chemical basis of serine palmitoyltransferase antifungal activity by myriocin[J]. Journal of the American Chemical Society, 2013, 135(38): 14276-14285. [42] Yamaji-Hasegawa A, Takahashi A, Tetsuka Y, et al. Fungal metabolite sulfamisterin suppresses sphingolipid synthesis through antifungal activity of serine palmitoyltransferase[J]. Biochemistry, 2005, 44(1): 268-277. [43] Shao J, Pei Z, Jing H, et al. Antifungal activity of myriocin against Fusarium graminearum and its antifungal activity on deoxynivalenol production in wheat grains[J]. Physiological and Molecular Plant Pathology, 2021, 114: 101635. [44] Baczewska A H, Dmuchowski W, Jozwiak A, et al. Effect of salt stress on prenol lipids in the leaves of Tilia 'Euchlora' [J]. Dendrobiology, 2014, 72: 177-186. [45] Bohlmann J, Keeling C I. Terpenoid biomaterials[J]. The Plant Journal, 2008, 54(4): 656-669. [46] Duraipandiyan V, Indwar F, Ignacimuthu S. Antimicrobial activity of confertifolin from Polygonum hydropiper[J]. Pharmaceutical Biology, 2010, 48(2): 187-190. [47] Hofius D, Sonnewald U. Vitamin E biosynthesis: biochemistry meets cell biology[J]. Trends in Plant Science, 2003, 8(1): 6-8. [48] Ashraf M, Foolad M R. Roles of glycine betaine and proline in improving plant abiotic stress resistance[J]. Environmental and Experimental Botany, 2007, 59(2): 206-216. [49] Feng B, Chen D, Jin R, et al. Bioactivities evaluation of an endophytic bacterial strain Bacillus velezensis JRX-YG39 inhabiting wild grape[J]. BMC Microbiology, 2022, 22(1): 170. [50] Yan Y, Xu W, Hu Y, et al. Bacillus velezensis YYC promotes tomato growth and induces resistance against bacterial wilt[J]. Biological Control, 2022, 172: 104977. [51] Nie L J, Ye W Q, Xie W Y, et al. Biofilm: New insights in the biological control of fruits with Bacillus amyloliquefaciens B4[J]. Microbiological Research, 2022, 265: 127196. |