[1] 中国科学院中国植物志编辑委员会. 中国植物志, 第17卷[M]. 北京: 科学出版社, 1999: 225. [2] Bingcong X, Siqi W, Liyang S, et al. Two polyamines -responsive WRKY transcription factors from Anoectochilus roxburghii play opposite functions on flower development[J]. Plant Science, 2023, 327: 111566. [3] Zhijun Z, Cong C, Ying S, et al. Anoectochilus roxburghii flavonoids extract ameliorated the memory decline and reduced neuron apoptosis via modulating SIRT1 signaling pathway in senescent mice[J]. Journal of Ethnopharmacology, 2022, 296: 115361. [4] Pensiri B, Jirarat K, Natchapon K, et al. Protective effect of Anoectochilus burmannicus extracts and its active compound, kinsenoside on adipocyte differentiation induced by benzyl butyl phthalate and bisphenol A[J]. Scientific Reports, 2023, 13(1): 2939. [5] Rong W, Siwei D, Rui X, et al. Kinsenoside mitigates myocardial ischemia/reperfusion-induced ferroptosis via activation of the Akt/Nrf2/HO-1 pathway[J]. European Journal of Pharmacology, 2023, 956: 175985. [6] Nan Q, Zhaohong A, Zeyu F, et al. Kinsenoside alleviates oxidative stress-induced blood-brain barrier dysfunction via promoting Nrf2/HO-1 pathway in ischemic stroke[J]. European Journal of Pharmacology, 2023, 949: 175717. [7] Chuanqing Z, Y X C, Yahui L, et al. First report of seedling stem rot on Jinxianlian (Anoectochilus roxburghii) caused by Fusarium oxysporum in China[J]. Plant Disease, 2021, 12(7): 34874176. [8] Ibrahim S R M, Sirwi A, Eid B G, et al. Bright side of Fusarium oxysporum: secondary metabolites bioactivities and industrial relevance in biotechnology and nanotechnology[J]. Journal of Fungi (Basel). 2021, 7(11): 943. [9] 周丹, 古建兰, 朱梅, 等. 紫苏提取物对两种病原菌的抑制效果[J]. 中国植保导刊, 2022, 42(5): 15-19. [10] Lombard L, Sandoval-Denis M, Lamprecht SC, et al. Epitypification of Fusarium oxysporum-clearing the taxonomic chaos[J]. Persoonia, 2019, 43: 1-47. [11] Epstein L, Kaur S, Henry PM. The emergence of Fusarium oxysporum f. sp. apii Race 4 and Fusarium oxysporum f. sp. coriandrii highlights major obstacles facing agricultural production in coastal california in a warming climate: a case study[J]. Front Plant Science, 2022, 13: 921516. [12] Bhagat N, Magotra S, Gupta R, et al. Invasion and colonization of pathogenic Fusarium oxysporum R1 in Crocus sativus L. during corm rot disease progression[J]. Journal of Fungi (Basel), 2022, 8(12): 1246. [13] 王有霜, 杨永报, 王倩男. 尖孢镰刀菌古巴专化型FocGSNOR基因功能初步分析[J]. 分子植物育种, 2024, 22(15): 4981-4988. [14] Perveen K, Bukhari NA, Al MLM, et al. Antifungal potential, chemical composition of Chlorella vulgaris and SEM analysis of morphological changes in Fusarium oxysporum[J]. Saudi Journal of Biological Sciences, 2022, 29(4): 2501-2505. [15] 刘瑾, 张朝正, 赵华. 抗尖孢镰刀菌贝莱斯芽孢杆菌P9培养基及发酵条件优化[J]. 中国酿造, 2023, 42(2): 157-162. [16] 高泽普, 佟静, 王宝驹, 等.不同尖孢镰刀菌对莲藕致病力差异与防治试剂筛选[J]. 蔬菜, 2022(5): 40-44. [17] Shull TE, Kurepa J, Miller RD, et al. Inhibition of Fusarium oxysporum f. sp. nicotianae growth by phenylpropanoid pathway intermediates[J]. The Plant Pathology Journal, 2020, 36(6): 637-642. [18] 章奕, 崔杰, 何若铭, 等. 秀珍菇采后病原菌的鉴定及挥发油防治[J]. 浙江农林大学学报, 2022, 39: 1-9. [19] 张莉睿, 毕洁. 植物挥发油对储藏物害虫防治作用的研究进展[J]. 中国粮油学报, 2022, 37: 1-11. [20] 邓静, 吴婷芬, 钟楚楚, 等. 基于GC-MS和化学计量学的岭南红脚艾与传统艾叶挥发油成分的比较研究[J]. 中国中药杂志, 2023, 48(23): 6334-6346. [21] 廖正根, 温佳豪, 徐希强, 等. 肉桂挥发油化学成分及其体外抗菌、抗氧化、抗肿瘤生物活性研究[J]. 中药药理与临床, 2024, 40(1): 69-76. [22] 秦聪聪, 杜沁圆, 张义敏, 等. 苍术挥发油化学成分及药理作用研究进展[J]. 中成药, 2023, 45(6): 1944-1952. [23] Milićević Z, Krnjajić S, Stević M, et al. Encapsulated clove bud essential oil: a new perspective as an eco-friendly biopesticide[J]. Agriculture, 2022, 12(3): 338. [24] 陈文丹, 白玉莹, 郭成虎, 等. 黄花蒿精油抑菌、抗氧化及毒理学特性研究[J]. 食品工业科技, 2024, 45(07): 44-50. [25] 李珊珊, 邹晖, 杨敏, 等. 5个不同品系迷迭香精油对金线莲尖孢镰刀菌的抑菌活性及GC-MS成分分析[J]. 中国生物防治学报, 2023, 39(4): 950-960. [26] Majdoub S, Chaabane-Banaoues R, Mokni RE, et al. Composition, insecticidal and antifungal activities of tunisian Daucus setifolius essential oil[J]. Waste and Biomass Valorization, 2022, 13: 3161-3170. [27] 赵娜娜, 杨安沛, 加米古丽·木斯尔汗, 等. 8种植物挥发油对4 种植物病原真菌的抑菌活性及椒蒿挥发油的GC-MS成分分析[J]. 中国生物防治学报, 2022, 38(5): 1261-1268. [28] 张守梅, 张娜娜, 王兴亚, 等. 植物挥发油对储藏期间小麦污染优势真菌的抑制效果研究[J]. 农产品质量与安全, 2021(3): 28-32, 39. [29] Yusuf B. Investigation of the antifungal effect of Thymbra spicata L. and Rosmarinus officinalis L. essential oils on Fusarium oxysporum f. sp. cucumerinum and Fusarium oxysporum f. sp. melonis[J]. Black Sea Journal of Agriculture, 2018(2): 34-37. [30] 中国科学院中国植物志编辑委员会. 中国植物志, 第66卷[M]. 北京: 科学出版社, 1977: 260. [31] Tullio V, Roana J, Scalas D, et al. Evaluation of the antifungal activity of Mentha x piperita (Lamiaceae) of Pancalieri (Turin, Italy) essential oil and its synergistic interaction with azoles[J]. Molecules, 2019, 24(17): 3148. [32] Soković MD, Vukojević J, Marin PD, et al. Chemical composition of essential oils of Thymus and Mentha species and their antifungal activities[J]. Molecules, 2009,14(1): 238-249. [33] 国家药典委员会. 中华人民共和国药典(一部) [M]. 北京: 中国医药科技出版社, 2020, 394. [34] 中国科学院中国植物志编辑委员会. 中国植物志, 第66卷[M]. 北京: 科学出版社, 1977, 262. [35] Hajishirkiaee M R, Ehtesabi H, Latifi H. Peppermint essential oil and ZnO nanoparticles: a green and effective combination for a cooling bilayer patch with antibacterial activity[J]. Journal of Environmental Chemical Engineering, 2024, 12(3): 112833. [36] 丁红营, 许红涛, 雷文莲, 等. 薄荷精油乳液载量对凝胶膜制备及其缓释性能的影响[J]. 中国食品添加剂, 2024, 35(3): 155-162. [37] Chen H, Xiao Y, Wang Y, et al. Two-dimensional correlation infrared spectroscopy elucidated the volatilization process of the microemulsion composed of peppermint essential oil and composite herbal extract[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2024, 311: 124009. [38] Soković M D, Vukojević J, Marin P D, et al. Chemical composition of essential oils of Thymus and ispecies and their antifungal activities[J]. Molecules, 2009, 14(1): 238-249. [39] Soliman S A, Hafez E E, AlKolaibe A M G, et al. Biochemical characterization, antifungal activity, and relative gene expression of two Mentha essential oils controlling Fusarium oxysporum, the causal agent of Lycopersicon esculentum root rot[J]. Plants, 2022, 11(2): 189. [40] Xv H, Yeum J K, Yoon H Y, et al. Effect of hydrogels in three substrates on growth and ornamental quality of apple mint (Mentha suaveolens)[J]. Journal of Horticulture, 2020, 7(3): 1-5. [41] 周露, 谢文申. 薄荷属植物选种育种研究进展[J].安徽农业大学学报, 2012, 39(1): 124-128. [42] Aneesha J, Muthulakshmi S, Nageswari K, et al. Performance assessment of Japanese mint varieties for growth under open field and vertical A-frame structure[J]. International Journal of Environment and Climate Change, 2023, 13(10): 3138-3144. [43] 唐齐. 金线莲菌根真菌的分离、筛选和应用研究[D]. 福州: 福建师范大学, 2017, 30. [44] 国家药典委员会. 中华人民共和国药典(四部) [M]. 北京: 中国医药科技出版社, 2020. [45] GB/T 17527-2009. 胡椒精油含量的测定[S]. 北京: 中华人民共和国国家质量监督检验检疫总局/中国国家标准化管理委员会, 2009. [46] 国家药典委员会. 中华人民共和国药典(一部) [M]. 北京: 中国医药科技出版社, 2020: 437. [47] 魏朝霞, 杨彩波, 和慧, 等.大蓟提取物对植物病原真菌的抑制活性[J]. 云南农业大学学报(自然科学), 2014, 29(1): 140-143. [48] 朱晓琴, 方树贤, 刘冬梅, 等. 辣椒炭疽病生防菌株的筛选、鉴定及其抑菌机理[J]. 植物保护学报, 2023, 50(4): 913-922. [49] Singh P, Pandey AK. Prospective of essential oils of the genus Mentha as biopesticides: a review[J]. Front Plant Science. 2018, 9: 1295. [50] Lombard L, Sandoval-Denis M, Lamprecht S C, et al. Epitypification of Fusarium oxysporum-clearing the taxonomic chaos[J]. Persoonia, 2019, 43: 1-47. [51] Zheng Z, Liu H, Shi Y, et al. Comparative transcriptome analysis reveals the resistance regulation mechanism and fungicidal activity of the fungicide phenamacril in Fusarium oxysporum[J]. Sci Rep, 2022, 12(1): 11081. [52] Purnama PC, Hernandez LC, Verpoorte R. Do fungicides affect alkaloid production in Catharanthus roseus (L.) G. Don. seedlings[J]? Molecules, 2023, 28(3): 1405. [53] 许巧楠, 杭林, 关路遥, 等. 氰烯菌酯与3 种药剂复配对尖孢镰刀菌草莓专化型的毒力[J]. 现代农药, 2025, 24(01): 82-84, 88. [54] Del Puerto O, Gonçalves N P F, Medana C, et al. Attenuation of toxicity and occurrence of degradation products of the fungicide tebuconazole after combined vacuum UV and UVC treatment of drinking water[J]. Environmental Science and Pollution Research, 2022, 29(38): 58312-58325. [55] Wang J, Chen X, Sun X, et al. Degradation pathway of triazole fungicides and synchronous removal of transformation products via photo-electrocatalytic oxidation tandem MoS2 adsorption[J]. Environmental Science and Pollution Research, 2021, 28(13): 16480-16491. [56] De la Paz JF, Beiza N, Paredes-Zúñiga S, et al. Triazole fungicides inhibit zebrafish hatching by blocking the secretory function of hatching gland cells[J]. International Journal Of Molecular Sciences, 2017, 18(4): 710. [57] Heise T, Schmidt F, Knebel C, et al. Hepatotoxic combination effects of three azole fungicides in a broad dose range[J]. Archives of Toxicology, 2018, 92(2): 859-872. [58] Knebel C, Süssmuth R D, Hammer H S, et al. New approach methods for hazard identification: a case study with azole fungicides affecting molecular targets associated with the adverse outcome pathway for cholestasis[J]. Cells, 2022, 11(20): 3293. [59] Seepe H A, Nxumalo W, Amoo S O. Natural products from medicinal plants against phytopathogenic Fusarium species: current research endeavours, challenges and prospects[J]. Molecules, 2021, 26(21): 6539. [60] 骆璐. 药用植物多农残重金属的大样本检测及综合风险评估[D]. 北京: 中国中医科学院, 2021, 64. [61] 李艳杰, 张昌朋, 廖先骏, 等. 基于农药残留的药用作物分类现状[J]. 农药学学报, 2021, 23(2): 237-244. [62] Mishra AK, Singh H, Kumar A, et al. Recent advancements in liquid chromatographic techniques to estimate pesticide residues found in medicinal plants around the globe[J]. Critical Reviews in Analytical Chemistry, 2023, 11-15. [63] 国家药典委员会. 中华人民共和国药典(四部). 北京: 中国医药科技出版社, 2020, 239. [64] Naz R, Nosheen A, Yasmin H, et al. Botanical-chemical formulations enhanced yield and protection against Bipolaris sorokiniana in wheat by inducing the expression of pathogenesis-related proteins[J]. PLoS One, 2018, 13(4): e0196194. [65] Shi Y, Si H, Wang P, et al. Derivatization of natural compound β-pinene enhances its in vitro antifungal activity against plant pathogens[J]. Molecules. 2019, 24(17): 3144. [66] Tafrihi M, Imran M, Tufail T, et al. The wonderful activities of the genus Mentha: not only antioxidant properties[J]. Molecules, 2021, 26(4): 1118. [67] Vining KJ, Hummer KE, Bassil NV, et al. Crop wild relatives as germplasm resource for cultivar improvement in mint (Mentha L.) [J]. Front Plant Sci, 2020, 11: 1217. [68] Brahmi F, Lounis N, Mebarakou S, et al. Impact of growth sites on the phenolic contents and antioxidant activities of three algerian Mentha species (M. pulegium L., M. rotundifolia (L.) Huds., and M. spicata L.) [J]. Front Pharmacol, 2022, 13: 886337. [69] Majdoub S, Chaabane B R, Mokni R E, et al. Composition, insecticidal and antifungal activities of Tunisian Daucus setifolius essential oil[J]. Waste and Biomass Valorization, 2022, 13(7):1-10. [70] Fu C, Lan XH, Yuan JQ, et al. Research on the optimization, key chemical constituents and antibacterial activity of the essential oil extraction process of Thuja koraiensis Nakai[J]. Journal of Microbiological Methods, 2022, 194: 106435. [71] Singh S, Bawitlung L, Singh M K, et al. Chemical composition of essential oil from Pilea microphylla and its antimicrobial activity[J]. Chemistry of Natural Compounds, 2022, 58(1): 161-162. [72] ALrashidi A A, Noumi E, Snoussi M, et al. Chemical composition, antibacterial and anti-quorum sensing activities of Pimenta dioica L. essential oil and its major compound (eugenol) against foodborne pathogenic bacteria[J]. Plants, 2022, 11(4): 540. [73] 杨静. 薄荷挥发油抑制三七层出镰刀菌的分子机制研究初探[D]. 云南中医药大学, 2024: 17. [74] El Hassani F Z. Characterization, activities, and ethnobotanical uses of Mentha species in Morocco[J]. Heliyon, 2020, 6(11): e05480. [75] Zekri N, Elazzouzi H, Ailli A, et al. Physicochemical characterization and antioxidant properties of essential oils of M. pulegium (L.), M. suaveolens (Ehrh.) and M. spicata (L.) from Moroccan middle-atlas[J]. Foods, 2023, 12(4): 760. [76] Mahmoudi H, Shokoohizadeh L, Zare Fahim N, et al. Detection of adeABC efllux pump encoding genes and antimicrobial effect of Mentha longifolia and Menthol on MICs of imipenem and ciprofloxacin in clinical isolates of Acinetobacter baumannii[J]. BMC Complementary Medicine and Therapies, 2020, 20(1): 92. [77] Božović M, Pirolli A, Ragno R. Mentha suaveolens Ehrh. (Lamiaceae) essential oil and its main constituent piperitenone oxide: biological activities and chemistry[J]. Molecules, 2015, 20(5): 8605-8633. [78] Park Y J, Baskar T B, Yeo S K, et al. Composition of volatile compounds and in vitro antimicrobial activity of nine Mentha spp.[J]. Springerplus, 2016, 5(1): 1628. [79] Afrokh M, El Mehrach K, Chatoui K, et al. Quality criteria, chemical composition and antimicrobial activity of the essential oil of Mentha suaveolens Ehrh[J]. Heliyon, 2024, 10(7): e28125. |