[1] Flinn P W. Temperature-dependent functional response of the parasitoid Cephalonomia waterstoni (Gahan) (Hymenoptera:Bethylidae) attacking rusty grain beetle larvae (Coleoptera:Cucujidae)[J]. Environmental Entomology, 1991, 20(3):872-876. [2] 钟宝珠, 许再福, 覃伟权. 温度对麦柔茧蜂功能反应的影响[J]. 昆虫学报, 2009, 52(4):395-400. [3] Skovgård H, Nachman G. Temperature-dependent functional response of Spalangia cameroni (Hymenoptera:Pteromalidae), a parasitoid of Stomoxys calcitrans (Diptera:Muscidae)[J]. Environmental Entomology, 2015, 44(1):90-99. [4] 吴兴富, 李天飞, 魏佳宁, 等. 温度对烟蚜茧蜂发育、生殖的影响[J]. 动物学研究, 2000, 21(3):192-198. [5] Eliopoulos P A, Stathas G J. Temperature-dependent development of the koinobiont endoparasitoid Venturia canescens (Gravenhorst) (Hymenoptera:Ichneumonidae):effect of host instar[J]. Environmental Entomology, 2003, 32(5):1049-1055. [6] Colinet H, Boivin G, Hance T H. Manipulation of parasitoid size using the temperature-size rule:fitness consequences[J]. Oecologia, 2007, 152:425-433. [7] Qiu B, Zhou Z S, Luo S P, et al. Effect of temperature on development, survival, and fecundity of Microplitis manilae (Hymenoptera:Braconidae)[J]. Environmental Entomology, 2012, 41(3):657-664. [8] Spanoudis C G, Andreadis S S. Temperature-dependent survival, development, and adult longevity of the koinobiont endoparasitoid Venturia canescens (Hymenoptera:Ichneumonidae) parasitizing Plodia interpunctella (Lepidoptera:Pyralidae)[J]. Journal of Pest Science, 2012, 85(1):75-80. [9] Van Nouhuys S, Lei G. Parasitoid-host metapopulation dynamics:the causes and consequences of phenological asynchrony[J]. Journal Animal Ecology, 2004, 73(3):526-535. [10] Parmesan C. Ecological and evolutionary responses to recent climate change[J]. Annual Review of Ecology Evolution and Systematica, 2006, 37(1):637-669. [11] Romo C M, Tylianakis J M. Elevated temperature and drought interact to reduce parasitoid effectiveness in suppressing hosts[J]. PLoS ONE, 2013, 8(3):e58136. [12] 陈学新, 何俊华, 马云. 中国动物志, 昆虫纲(第三十七卷)膜翅目:茧蜂科(二)[M]. 北京:科学出版社, 2004, 384-385. [13] 罗礼智, 黄绍哲, 江幸福, 等. 我国2008年草地螟大发生特征及成因分析[J]. 植物保护, 2009, 35(1):27-33. [14] 罗礼智, 程云霞, 唐继洪, 等. 温湿度是影响草地螟发生为害规律的关键因子[J]. 植物保护, 2016, 42(4):1-8. [15] 罗礼智, 程云霞, 草地螟. 中国农业科学院植物保护研究所, 中国植物保护学会主编. 中国农作物病虫害(第三版)[M]. 北京:中国农业出版社, 2014:1441-1448. [16] 李红. 草地螟幼虫寄生天敌种类、寄生率及其影响因子的研究[D]. 北京:中国农业科学院, 2008. [17] 田晓霞. 草地螟寄生蜂及其对寄主种群的控制作用[D]. 北京:中国农业科学院, 2010. [18] 杜芹. 康保苜蓿害虫及其天敌的研究[D]. 武汉:华中农业大学, 2015. [19] 康爱国, 杨立军, 张玉慧, 等. 冀西北农牧交错区草地螟寄生蜂及其控害作用[J]. 应用昆虫学报, 2015, 52(1):215-222. [20] 罗礼智, 李光博. 草地螟的有效积温及其世代区的划分[J]. 昆虫学报, 1993, 36(3):332-339. [21] 丁岩钦. 昆虫数学生态学[M]. 北京:科学出版社, 1994, 450-454. [22] Davidson J. On the relationship between temperature and rate of development of insects at constant temperature[J]. Journal of Animal Ecology, 1944, 13(1):26-38. |