[1] Blackman R L, Eastop V F. Aphids on the world's herbaceous plants and shrubs[J]. Crop Protection, 2006, 15(4):400. [2] Gupta V. Aphids on the world's crops. An identification and information guide[J]. Oriental Insects, 1994, 35(1):104. [3] 韩宗礼, 谭晓玲, 范佳, 等. 模拟气候变暖对不同纬度带麦长管蚜和禾谷缢管蚜种群动态的影响[J]. 植物保护学报, 2018, 45(3):592-598. [4] Yan S, Wang W X, Shen J. Reproductive polyphenism and its advantages in aphids:Switching between sexual and asexual reproduction[J]. Journal of Integrative Agriculture, 2020, 19(6):1447-1457. [5] Hayes A M, Lavine M D, Gotoh H, et al. Mechanisms regulating phenotypic plasticity in wing polyphenic insects[J]. Advances in Insect Physiology, 2019, 56(1):43-72. [6] 王小艺, 杨忠岐, 魏可, 等. 昆虫翅型分化的表型可塑性机制[J]. 生态学报, 2015, 35(12):3988-3999. [7] Song L, Gao Y, Li J, et al. iTRAQ-based comparative proteomic analysis reveals molecular mechanisms underlying wing dimorphism of the pea aphid, Acyrthosiphon pisum[J]. Frontiers in Physiology, 2018, 9(7):10-16. [8] Ji J C, Zhang S, Luo J Y, et al. Comparative transcriptional analysis provides insights of possible molecular mechanisms of wing polyphenism induced by postnatal crowding in Aphis gossypii[J]. Journal of Cotton Research, 2019, 2(3):22-32. [9] Ji J C, Huangfu N B, Luo J Y, et al. Insights into wing dimorphism in worldwide agricultural pest and host-alternating aphid Aphis gossypii[J]. Journal of Cotton Research, 2021, 4(1):5. [10] Vellichirammal N, Gupta P, Hall T, et al. Ecdysone signaling underlies the pea aphid transgenerational wing polyphenism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(6):1419-1423. [11] Li X, Zhang F, Coates B, et al. Comparative profiling of microRNAs in the winged and wingless English grain aphid, Sitobion avenae (F.) (Homoptera:Aphididae)[J]. Scientific Reports, 2016, 6(6):35668. [12] Zhang C X, Jennifer B, Xu H J. Molecular mechanisms of wing polymorphism in insects[J]. Annual Review of Entomology, 2018, 64(64):297-314. [13] Angela E D. Multiorganismal insects:diversity and function of resident microorganisms[J]. Annual Review of Entomology, 2015, 60(1):17. [14] Qian L, Jia F, Jingxuan S, et al. Hamiltonella defensa effect of the secondary symbiont on fitness and relative abundance of wheat aphid[J]. Frontiers in Microbiology, 2018, 9:582. [15] Feng H, Noel E, Catriona M H, et al. Trading amino acids at the aphid- Buchnera symbiotic interface[J]. Proceedings of the National Academy of Ences, 2019, 116(32):16003-16011. [16] Lukasik P, Van Asch M, Guo H, et al. Unrelated facultative endosymbionts protect aphids against a fungal pathogen[J]. Ecology Letters, 2013, 16(2):214-218. [17] Cheng D, Guo Z, Riegler M, et al. Gut symbiont enhances insecticide resistance in a significant pest, the oriental fruit fly Bactrocera dorsalis (Hendel)[J]. Microbiome, 2017, 5(1):13. [18] Stouthamer R, Breeuwer J A, Hurst G D. Wolbachia pipientis:microbial manipulator of arthropod reproduction[J]. Annual Review of Microbiology, 1999, 53(53):71-102. [19] Werren J H, Baldo L, Clark M E. Wolbachia:master manipulators of invertebrate biology[J]. Nature Reviews Microbiology, 2008, 6(10):741-751. [20] Zhang F, Li X, Zhang Y, et al. Bacterial symbionts, Buchnera, and starvation on wing dimorphism in English grain aphid, Sitobion avenae (F.) (Homoptera:Aphididae)[J]. Frontiers in Physiology, 2015, 6:155. [21] Reyes M L, Laughton A M, Parker B J, et al. The influence of symbiotic bacteria on reproductive strategies and wing polyphenism in pea aphids responding to stress[J]. Journal of Animal Ecology, 2019, 88(4):601-611. [22] 杨益众, 张建军, 戴志一, 等. 影响禾缢管蚜翅分化的因子初探[J]. 江苏农业研究, 2000(1):56-59, 63. [23] Xu N, Tan G, Wang H, et al. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure[J]. European Journal of Soil Biology, 2016, 74:1-8. [24] Zhang S, Luo J, Wang L, et al. Bacterial communities in natural versus pesticide-treated Aphis gossypii populations in North China[J]. Microbiology Open, 2019, 8(3):652. [25] Johana J, Gallo-Franco D,, Duque-Gamboa N, et al. Bacterial communities of Aphis gossypii and Myzus persicae (Hemiptera:Aphididae) from pepper crops (Capsicum sp.)[J]. Scientific Reports, 2019, 9(1):5766. [26] Kokolo B, Nkoulémbéné C A, Ibrahim B, et al. Phenotypic plasticity in size of ant-domatia[J]. Scientific Reports, 2020,10(1):20948. [27] Guidolin A, Cônsoli F. Diversity of the most commonly reported facultative symbionts in two closely-related aphids with different host ranges[J]. Neotropical Entomology, 2018, 47(4):440-446. [28] Shang F, Niu J, Ding B, et al. Comparative insight into the bacterial communities in alate and apterous morphs of brown citrus aphid (Hemiptera:Aphididae)[J]. Journal of Economic Entomology, 2020, 113(3):1436-1444. [29] Xu S, Jiang L, Qiao G, et al. Diversity of bacterial symbionts associated with Myzus persicae (Sulzer) (Hemiptera:Aphididae:Aphidinae) revealed by 16S rRNA Illumina sequencing[J]. Microbial Ecology, 2020, 10(7):1677. [30] Blow F, Bueno E, Clark N, et al. B-vitamin nutrition in the pea aphid-Buchnera symbiosis[J]. Journal of Ensect Physiology, 2020, 126:104092. [31] Hardie J, Leckstein P. Antibiotics, primary symbionts and wing polyphenism in three aphid species[J]. Insect Biochemistry and Molecular Biology, 2007, 37(8):886-890. [32] He T, Xie D, Ni J, et al. Characteristics of nitrogen transformation and intracellular nitrite accumulation by the hypothermia bacterium Arthrobacter arilaitensis[J]. The Science of the Total Environment, 2020, 701:134730. [33] He T, Xie D, Ni J, et al. Ca(II) and Mg(II) significantly enhanced the nitrogen removal capacity of Arthrobacter arilaitensis relative to Zn(II) and Ni(II)[J]. Journal of Hazardous Materials, 2019, 368:594-601. [34] Motta G E, Molognoni L, Daguer H, et al. The potential of bacterial cultures to degrade the mutagen 2-methyl-1,4-dinitro-pyrrole in a processed meat model[J]. Food Research International, 2020, 136:109441. [35] Alijani Z, Amini J, Ashengroph M, et al. Antifungal activity of volatile compounds produced by Staphylococcus sciuri strain MarR44 and its potential for the biocontrol of Colletotrichum nymphaeae, causal agent strawberry anthracnose[J]. International Journal of Food Microbiology, 2019, 307:108276. [36] Sakurai M, Koga R, Tsuchida T, et al. Rickettsia symbiont in the pea aphid Acyrthosiphon pisum:novel cellular tropism, effect on host fitness, and interaction with the essential symbiont Buchnera[J]. Applied and Environ Microbiol, 2005, 71(7):4069-4075. [37] Leclair M, Polin S, Jousseaume T, et al. Consequences of co-infection with protective symbionts on the host phenotype and symbiont titres in the pea aphid system[J]. Insect Science, 2017, 24(5):798-808. |