[1] Hamby K A, Kwok R S, Zalom F G, et al. Integrating circadian activity and gene expression profiles to predict chronotoxicity of Drosophila suzukii response to insecticides[J]. PLoS ONE, 2013, 8(7): e68472. [2] Bruck D J, Bolda M, Tanigoshi L, et al. Laboratory and field comparisons of insecticides to reduce infestation of Drosophila suzukii in berry crops[J]. Pest Management Science, 2011, 67(11): 1375-1385. [3] Lee J C, Bruck D J, Curry H, et al. The susceptibility of small fruits and cherries to the spotted- wing drosophila, Drosophila suzukii[J]. Pest Management Science, 2011, 67(11): 1358-1367. [4] Hauser M. A historic account of the invasion of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) in the continental United States, with remarks on their identification[J]. Pest Management Science, 2011, 67(11): 1352-1357. [5] Chacón-Cerdas R, González-Herrera A, Alvarado-Marchena L, et al. Report of the establishment of Drosophila suzukii (Matsumura, 1931) (Diptera: Drosophilidae) in Central America[J]. Entomological Communications, 2024, 6: ec06003. [6] Yi C D, Cai P M, Lin J, et al. Life history and host preference of Trichopria drosophilae from southern China, one of the effective pupal parasitoids on the Drosophila species[J]. Insects, 2020, 11(2): 103. [7] Hamby K A, Hernández A, Boundy M K, et al. Associations of yeasts with spotted-wing drosophila (Drosophila suzukii; Diptera: Drosophilidae) in cherries and raspberries[J]. Applied and Environmental Microbiology, 2012, 78(14): 4869-4873. [8] Ioriatti C, Walton V, Dalton D, et al. Drosophila suzukii (Diptera: Drosophilidae) and its potential impact to wine grapes during harvest in two cool climate wine grape production regions[J]. Journal of Economic Entomology, 2015, 108(3): 1148-1155. [9] Walsh D B, Bolda M P, Goodhue R E, et al. Drosophila suzukii (Diptera: Drosophilidae): Invasive pest of ripening soft fruit expanding its geographic range and damage potential[J]. Journal of Integrated Pest Management, 2011, 2(1): G1-G7. [10] 陈晓旭, 晏文峰, 王珏, 等. 斑翅果蝇在中国的风险性分析[J]. 中国植保导刊, 2022, 42(10): 91-94. [11] Lee J C, Wang X G, Daane K M, et al. Biological control of spotted-wing Drosophila (Diptera: Drosophilidae)-current and pending tactics[J]. Journal of Integrated Pest Management, 2019, 10(1): 13. [12] 蔡普默. 斑翅果蝇引诱技术和触角嗅觉基因的转录组研究[D]. 福州: 福建农林大学, 2018. [13] Gabarra R, Riudavets J, Rodríguez G A, et al. Prospects for the biological control of Drosophila suzukii[J]. BioControl, 2015, 60: 331-339. [14] Lenteren J C, Tommasini M G. Mass production, storage, shipment and release of natural enemies[M]//Quality Control and Production of Biological Control Agents: Theory and Testing Procedures. Wallingford UK: CABI Press, 2003, 181-189. [15] Liu X X, Yang Y B, Fan Q W, et al. Effect of ultraviolet-B radiating Drosophila melanogaster as host on the quality of Trichopria drosophilae, a pupal parasitoid of Drosophila suzukii[J]. Insects, 2023, 14(5): 423. [16] 刘旭祥, 杨永棒, 凡庆文, 等. 紫外线辐照被寄生的黑腹果蝇蛹对果蝇锤角细蜂生长发育的影响[J]. 昆虫学报, 2023, 66(11): 1518-1526. [17] 刘旭祥, 仪传冬, 敖国富, 等. 三种紫外线辐照对黑腹果蝇蛹的影响[J]. 中国生物防治学报, 2021, 37(2): 228-234. [18] Rathee M, Ram P. Effect of cold storage of Aenasius bambawalei Hayat (Hymenoptera: Encyrtidae) during pupal stage on its key biological characteristics[J]. Journal of Biological Control, 2014, 28(2): 11-17. [19] Singhamuni S A A, Hemachandra K S, Sirisena U. Potential for mass rearing of the egg parasitoids, Trichogramma chilonis and Tricogramma achaeae (Hymenoptera: Trichogrammatidae) on Corcyra cephalonica eggs[J]. Tropical Agricultural Research, 2015, 27(1): 1-12. [20] Colinet H, Hance T. Interspecific variation in the response to low temperature storage in different aphid parasitoids[J]. Annals of Applied Biology, 2010, 156(1): 147-156. [21] Schread J C, Garman P. Some effects of refrigeration on the biology of Trichogramma in artificial breeding[J]. Journal of the New York Entomological Society, 1934, 42(3): 263-283. [22] Hanna A D. Fertility and tolerance of low temperature in Euchalcidia carybori Hanna (Hymenoptera: Chalcidinae)[J]. Bulletin of Entomological Research, 1935, 26(3): 315-322. [23] Gotthard K, Nylin S. Adaptive plasticity and plasticity as an adaptation: A selective review of plasticity in animal morphology and life history[J]. Oikos, 1995, 74(1): 3-17. [24] Aly M F K, Kraus D A, Burrack H J. Effects of postharvest cold storage on the development and survival of immature Drosophila suzukii (Diptera: Drosophilidae) in artificial diet and fruit[J]. Journal of Economic Entomology, 2017, 110(1): 87-93. [25] 张红梅, 王燕, 赵雪晴, 等. 低温贮藏对半闭弯尾姬蜂蛹和成虫生长发育的影响[J]. 中国生物防治学报, 2022, 38(3): 595-601. [26] 赵静, 王蕾, 张帆, 等. 低温贮藏对丽蚜小蜂生长发育和扩散的影响[J]. 中国生物防治学报, 2019, 35(4): 497-503. [27] 沈祖乐, 李翌菡, 周雅婷, 等. 天敌昆虫低温贮藏研究进展[J]. 热带作物学报, 2017, 38(2): 374-380. [28] Sinclair B J, Vernon P, Klok C J, et al. Insects at low temperatures: An ecological perspective[J]. Trends in Ecology & Evolution, 2003, 18(5): 257-262. [29] Colinet H, Rinehart J P, Yocum G D, et al. Mechanisms underpinning the beneficial effects of fluctuating thermal regimes in insect cold tolerance[J]. Journal of Experimental Biology, 2018, 221(14): jeb164806. [30] Xie Z F, Xu L C, Zhao J, et al. Rapid cold hardening and cold acclimation promote cold tolerance of oriental fruit fly, Bactrocera dorsalis (Hendel) by physiological substances transformation and cryoprotectants accumulation[J]. Bulletin of Entomological Research, 2023, 113(4): 574-586. [31] Sinclair B J, Rajamohan A. Slow or stepped rewarming after acute low-temperature exposure does not improve survival of Drosophila melanogaster larvae[J]. The Canadian Entomologist, 2008, 140(3): 306-311. [32] Jervis M A, Ferns P N, Heimpel G E. Body size and the timing of egg production in parasitoid wasps: A comparative analysis[J]. Functional Ecology, 2003, 17(3): 375-383. [33] Brown J H, Marquet P A, Taper M L. Evolution of body size: Consequences of an energetic definition of fitness[J]. American Naturalist, 1993, 142(4): 573-584. [34] Ellers J, Van Alphen J J M. Life history evolution in Asobara tabida: Plasticity in allocation of fat reserves to survival and reproduction[J]. Journal of Evolutionary Biology, 1997, 10(5): 771-785. [35] Visser B, Ellers J. Lack of lipogenesis in parasitoids: A review of physiological mechanisms and evolutionary implications[J]. Journal of Insect Physiology, 2008, 54(9): 1315-1322. [36] Chown S L, Nicolson S W. Insect physiological ecology: Mechanisms and patterns[J]. Journal of Experimental Biology, 2004, 207(26): 4489-4489. [37] Somme L. The effect of prolonged exposures at low temperatures in insects[J]. CryoLetters, 1996, 17: 341-346. [38] Colinet H, Hance T, Vernon P, et al. Does fluctuating thermal regime trigger free amino acid production in the parasitic wasp Aphidius colemani (Hymenoptera: Aphidiinae)?[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2007, 147(2): 484-492. [39] 潘飞, 陈绵才, 肖彤斌, 等. 变温对昆虫生长发育和繁殖影响的研究进展[J]. 环境昆虫学报, 2014, 36(2): 240-246. [40] Mironidis G K, Savopoulou S M. Development, survivorship and reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae) under constant and alternating temperatures[J]. Environmental Entomology, 2014, 37(1): 16-28. [41] Zhu C X, Zhao M, Zhang H B, et al. Extending the storage time of Clanis bilineata tsingtauica (Lepidoptera; Sphingidae) eggs through variable-temperature cold storage[J]. Foods, 2021, 10(11): 2820. [42] Enriquez T, Ruel D, Charrier M, et al. Effects of fluctuating thermal regimes on cold survival and life history traits of the spotted wing Drosophila (Drosophila suzukii)[J]. Insect Science, 2020, 27(2): 317-335. [43] Rigaux M, Vernon P, Hance T, et al. Relationship between acclimation of Aphidius rhopalosiphi (De Stefani-Peres) in autumn and its cold tolerance (Hymenoptera: Braconidae, Aphidiinae)[C]. International Symposium on Crop Protection, Proceedings, 2000, 65(2A-B): 253-263. [44] Abarca M, Spahn R. Direct and indirect effects of altered temperature regimes and phenological mismatches on insect populations[J]. Current Opinion in Insect Science, 2021, 47: 67-74. [45] Tougeron K, Brodeur J, Le L C, et al. How climate change affects the seasonal ecology of insect parasitoids[J]. Ecological Entomology, 2020, 45(2): 167-181. [46] 张烨, 连梅力, 李唐, 等. 不同低温驯化条件对玉米螟赤眼蜂低温贮藏的影响[J]. 中国生物防治学报, 2016, 32(2): 277-281. [47] 韦兰, 欧后丁, 王秀琴, 等. 低温驯化冷藏对麦蛾茧蜂成虫寿命和繁殖的影响[J]. 山地农业生物学报, 2022, 41(2): 76-81. [48] Mahi H, Rasekh A, Michaud J P, et al. Biology of Lysiphlebus fabarum following cold storage of larvae and pupae[J]. Entomologia Experimentalis et Applicata, 2014, 153(1): 10-19. |