[1] Vitousek P M, Mooney H A, Lubchenco J, et al. Human domination of earth's ecosystems[J]. Science, 1997, 277(5325): 494-499. [2] 廖慧璇, 周婷, 陈宝明, 等. 外来入侵植物的生态控制[J]. 中山大学学报(自然科学版), 2021, 60(4): 1-11. [3] 吴海荣. 南京地区外来杂草调查及婆婆纳属外来杂草入侵性特征比较研究[D]. 南京: 南京农业大学, 2006. [4] Manrique V, Diaz, R, Erazo L, et al. Comparison of two populations of Pseudophilothrips ichini (Thysanoptera: Phlaeothripidae) as candidates for biological control of the invasive weed Schinus terebinthifolia (Sapindales: Anacardiaceae)[J]. Biocontrol Science and Technology, 2014, 24(5): 518-535. [5] Zhao H X, Yang N W, Huang H K, et al. Integrating biogeographic approach into classical biological control: Assessing the climate matching and ecological niche overlap of two natural enemies against common ragweed in China[J]. Journal of Environmental Management, 2023, 347: 119095. [6] 马瑞燕, 王韧. 不同生态型的喜旱莲子草对莲草直胸跳甲化蛹能力的影响[J]. 植物生态学报, 2004(1): 24-30. [7] Strathie L W, McConnachie A J, Retief E. Initiation of biological control against Parthenium hysterophorus L. (Asteraceae) in South Africa[J]. African Entomology, 2011, 19(2): 378-392. [8] Tanvee A, Khaliq A, Ali H H, et al. Interference and management of parthenium: The world's most important invasive weed[J]. Crop Protection, 2015, 68: 49-59. [9] 高兴祥, 李美, 曹坳程, 等. 银胶菊种子萌发特性及对除草剂的敏感性研究[C]. 第十一届全国杂草科学大会论文摘要集, 2013, 16-17. [10] 高兴祥, 李美, 高宗军, 等. 外来入侵杂草银胶菊种子萌发特性及无性繁殖能力研究[J]. 生态环境学报, 2013, 22(1): 100-104. [11] 唐赛春, 韦春强, 莫科, 等. 银胶菊在不同入侵生境中的繁殖特征[J]. 中山大学学报(自然科学版), 2010, 49(1): 90-94. [12] Masum S M, Halim A, Mandal M S H, et al. Predicting current and future potential distributions of Parthenium hysterophorus in Bangladesh using Maximum entropy ecological niche modelling[J]. Agronomy, 2022, 12(7): 1592. [13] Chhogyel N, Kumar L, Bajgai Y. Invasion status and impacts of parthenium weed (Parthenium hysterophorus) in West-Central region of Bhutan[J]. Biol Invasions, 2021, 23(1): 2763-2779. [14] Tamado T, Ohlander L, Milberg P. Interference by the weed Parthenium hysterophorus L. with grain sorghum: Influence of weed density and duration of competition[J]. International Journal of Pest Management, 2002, 48(3): 183-188. [15] Chippendale J F, Panetta F D, Branch L P, et al. The cost of parthenium weed to the Queensland cattle industry[J]. Plant Protection Quarterly, 1994, 9(2): 73-76. [16] Drake J A. Management of invasive weeds[M]. Netherlands: Springer, 2009. [17] Towers C H N, Subba Rao P V. Impact of the pan-tropical weed, Parthenium hysterophorus L. on human affairs[J]. Proceedings of the First International Weed Control Congress 1992, 1: 134-138. [18] 蔺景娟. 植物疾病与害虫生物防治[J]. 河北农机, 2024(4): 84-86. [19] Withers T M, Christensen J A, Burwell C J. Erixestus zygogrammae cave and Grissell (Hymenoptera: Pteromalidae): An exotic egg parasitoid of Zygogrumma bicolorutu Pallister (Coleoptera: Chrysomelidae) in Australia[J]. Australian Journal of Entomology, 1998, 37(1): 83-84. [20] Dhileepan K. Effectiveness of introduced biocontrol insects on the weed Parthenium hysterophorus (Asteraceae) in Australia[J]. Bulletin of Entomological Research, 2001, 91(3): 167-176. [21] Sushilkumar D. Biological control of Parthenium in India: status and prospects[J]. Indian Journal of Weed Science, 2009, 41(1-2): 1-18. [22] Dhileepan K, Setter S D, Mcfadyen R E. Impact of defoliation by the biocontrol agent Zygogramma bicolorata on the weed Parthenium hysterophorus in Australia[J]. BioControl, 2000, 45(4): 501-512. [23] Peter S. Why do natural enemies fail in classical biological control programs?[J]. American Entomologist, 39(1): 31-37. [24] Hokkanen H M T, Sailer R I. Sailer. Success in classical biological control[J]. Critical Reviews in Plant Sciences, 1985, 3(1): 35-72. [25] 陈文昱, 党英侨, 王小艺. 基于MaxEnt模型的白蜡吉丁啮小蜂的潜在适生区预测[J]. 中国生物防治学报, 2024,40(2): 235-247. [26] 党志浩, 陈法军. 昆虫对降雨和干旱的响应与适应[J]. 应用昆虫学报, 2011, 48(5): 1161-1169. [27] Zhao H X, Xian X Q, Yang N W, et al. Insights from the biogeographic approach for biocontrol of invasive alien pests: Estimating the ecological niche overlap of three egg parasitoids against Spodoptera frugiperda in China[J]. Science of the Total Environment, 2023, 862: 160785. [28] Rune H, Sabrina M, Bryn S, et al. Opportunities for improved distribution modelling practice via a strict maximum likelihood interpretation of MaxEnt[J]. Ecography, 2015, 38(2): 172-183. [29] Baldwin R A. Use of maximum entropy modeling in wildlife research[J]. Entropy, 2009, 11(4): 854-866. [30] Graham C H, Elith J, Hijmans R J, et al. The influence of spatial errors in species occurrence data used in distribution models[J]. Journal of Applied Ecology, 2008, 45(1): 239-247. [31] Wan G Z, Wang L, Jin L, et al. Evaluation of environmental factors affecting the quality of Codonopsis pilosula based on chromatographic fingerprint and MaxEnt model[J]. Industrial Crops and Products, 2021, 170: 113783. [32] Phillips S J, Dud′ık M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation[J]. Echography, 2008, 31(2): 161-175. [33] Muscarella R, Galante P J, Soley-Guardia M, et al. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for MaxEnt ecological niche models[J]. Methods in Ecology and Evolution, 2014, 5(11): 1198-1205. [34] 尧聪, 岳媛, 危永胜, 等. 基于MaxEnt模型的川续断气候适宜性分析[J]. 西南大学学报(自然科学版), 2018, 40(3): 60-67. [35] 王晓玮, 任雪燕, 梁英梅. 基于MaxEnt模型的松针红斑病在中国的潜在分布区及适生性预测分析[J]. 林业科学, 2019, 55(4): 160-170. [36] Warren D L, Glor R E, Turelli M. ENMTools: a toolbox for comparative studies of environmental niche models[J]. Echography, 2010, 33(3): 607-611. [37] Dilts T E, Steele M O, Engler J D, et al. Host plants and climate structure habitat associations of the western monarch butterfly[J]. Frontiers in Ecology and Evolution, 2019, 7: 1-17. [38] 王运生, 谢丙炎, 万方浩, 等. ROC曲线分析在评价入侵物种分布模型中的应用[J]. 生物多样性, 2007(4): 365-372. [39] Vanagas G. Receiver operating characteristic curves and comparison of cardiac surgery risk stratification systems[J]. Interactive Cardiovascular and Thoracic Surgery, 2004, 3(2): 319-322. [40] Swets J A. Measuring the accuracy of diagnostic systems[J]. Science, 1988, 240(4857): 1585-1293. [41] 叶兴状, 张明珠, 赖文峰, 等. 基于MaxEnt优化模型的闽楠潜在适宜分布预测[J]. 生态学报, 2021, 41(20): 8135-8144. [42] Phillips S J, Anderson R P, Schapire R E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006, 190(3-4): 231-259. [43] 王春晓, 刘阳, 钟址非, 等. 气候变化下2 种银胶菊属入侵植物在中国的潜在适生区分析[J]. 亚热带植物科学, 2023, 52(2): 125-134. [44] Arogoundade A M, Odindi J, Mutanga O. Modelling Parthenium hysterophorus invasion in KwaZulu-Natal province using remotely sensed data and environmental variables[J]. Geocarto International, 2020, 35(13): 1450-1465. [45] Adhikari P, Lee Y-H, Poudel A, et al. Predicting the impact of climate change on the habitat distribution of Parthenium hysterophorus around the world and in South Korea[J]. Biology, 2023, 12(1): 2-16. [46] Mao R, Bajwa A A, Adkins S. A superweed in the making: adaptations of Parthenium hysterophorus to a changing climate: A review[J]. Agronomy for Sustainable Development, 2021, 41(47):1-18. [47] Kapoor R T. The stimulating impact of elevated temperatures on growth and productivity of Parthenium hysterophorus L.[J]. Egyptian Journal of Biology, 2014, 16(1): 51-56. [48] Matzrafi M, Raz H, Rubin B, et al. Distribution and biology of the invasive weed Parthenium hysterophorus L.in Israel[J]. Frontiers in Agronomy, 2021, 3: 639991. [49] Weyl P. Parthenium hysterophorus (parthenium weed)[J]. CABI Compendium. Wallingford: CABI International. [50] Ghazali M N, Sinniah U R, Hamdani M S A. Parthenium hysterophorus weed fecundity and seed survival at different soil ph and burial conditions[J].Pertanika Journal of Tropical Agricultural Science, 2023, 46(2): 593-606. [51] 王国欢, 白帆, 桑卫国. 中国外来入侵生物的空间分布格局及其影响因素[J]. 植物科学学报, 2017, 35(4): 513-524. [52] Pandey D K, Palni L M S, Joshi S C. Growth, reproduction, and photosynthesis of ragweed parthenium (Parthenium hysterophorus)[J]. Weed Science, 2003, 51(2): 191-201. [53] Skendžic′ S, Zovko M, Živkovic′ I P, et al. The impact of climate change on agricultural insect pests[J]. Insects, 2021, 12(5): 440. [54] Omkar, Rastogi S, Pandey P. Effect of temperature on reproductive attributes of the Mexican beetle Zygogramma bicolorata (Coleoptera: Chrysomelidae)[J]. International Journal of Tropical Insect Science, 2009, 29(1): 48-52. [55] Omkar, Rastogi S, Pandey P. Effect of temperature on development and immature survival of Zygogramma bicolorata (Coleoptera: Chrysomelidae) under laboratory conditions[J]. International Journal of Tropical Insect Science, 2008, 28(3): 130-135. [56] Omkar, Rastogi S, Pervez A. Demographic attributes of the parthenium beetle Zygogramma bicolorata (Coleoptera: Chrysomelidae) under different variables[J]. International Journal of Tropical Insect Science, 2013, 33(3): 170-177. [57] Kumar S. Biological Control of Parthenium through Zygogramma bicolorata[M]. India: National Research Centre for Weed Science, 2005. [58] Gharde Y, Sushilkumar, Sharma A R. Exploring models to predict the establishment of the leaf-feeding beetle Zygogramma bicolorata (Coleoptera: Chrysomelidae) for the management of Parthenium hysterophorus (Asteraceae: Heliantheae) in India[J]. Crop Protection, 2019, 122(8): 57-62. [59] Strathie L W, Cowie B W, Mcconnachie A J, et al. A decade of biological control of Parthenium hysterophorus L. (Asteraceae) in South Africa reviewed: introduction of insect agents and their status[J]. African Entomology, 2021, 29(3): 809-806. |