[1] Adolf B, Andrade-Piedra J, Molina F B, et al. Fungal, Oomycete, and Plasmodiophorid Diseases of Potato[M]. Berlin: Spring International Publishing, 2020, 307-350. [2] Wei Q, Li J, Yang S, et al. Streptomyces rhizophilus causes potato common scab disease[J]. Plant Disease, 2022, 106(1): 266-274. [3] 夏善勇, 盛万民. 我国马铃薯疮痂病及其防治研究进展[J]. 植物保护, 2022, 48(1): 7-16, 28. [4] Ismail S, Jiang B, Nasimi Z, et al. Investigation of Streptomyces scabies causing potato scab by various detection techniques, its pathogenicity and determination of host-disease resistance in potato germplasm[J]. Pathogens, 2020, 9(9): 760. [5] Sparrow L A, Rettke M, Corkrey S R. Eight years of annual monitoring of DNA of soil-borne potato pathogens in farm soils in south eastern Australia[J]. Australasian Plant Pathology, 2015, 44(2): 191-203. [6] 张萌, 刘伯, 于秀梅, 等. 中国马铃薯疮痂病菌生物学特性分析[J]. 中国农业科学, 2010, 43(12): 2603-2610. [7] Zadeh M K, Bonjar G H S, Farrokhi P R, et al. Antagonistic potential of two native Streptomyces strains in biocontrol of the major causals of common scab of potato in Iran[J]. Asian Journal of Plant Sciences, 2005, 5(1): 1682-3974. [8] Larkin R P, Tavantzis S. Use of biocontrol organisms and compost amendments for improved control of soilborne diseases and increased potato production[J]. American Journal of Potato Research, 2013, 90(3): 261-270. [9] Prasanna S, Prasannakumar M K, Mahesh H B, et al. Diversity and biopotential of Bacillus velezensis strains A6 and P42 against rice blast and bacterial blight of pomegranate[J]. Archives of Microbiology, 2021, 203(7): 4189-4199. [10] Guardado-Valdivia L, Tovar-Pérez E, Chacón-López A, et al. Identification and characterization of a new Bacillus atrophaeus strain B5 as biocontrol agent of postharvest anthracnose disease in soursop (Annona muricata) and avocado (Persea americana)[J]. Microbiological Research, 2018, 210: 26-32. [11] 李岚岚, 戴利铭, 施玉萍, 等. 橡胶树生防内生菌解淀粉芽孢杆菌的理化特性及田间防效[J]. 热带农业科技, 2023, 46(04): 54-60. [12] Wang Y, Zhang C, Liang J, et al. Iturin A extracted from Bacillus subtilis WL-2 affects phytophthora infestans via cell structure disruption, oxidative stress, and energy supply dysfunction[J]. Frontiers in Microbiology, 2020, 11: 536083. [13] Andersen S M, Johnsen K, Sorensen J, et al. Pseudomonas frederiksbergensis sp nov., isolated from soil at a coal gasification site[J]. International of Systematic and Evolutionary Microbiology, 2000, 50: 1957-1964. [14] 张子玉, 谢学文, 石延霞, 等. 白菜黑腐病拮抗菌Lysobacter enzymogenes CX03的分离鉴定及生防效果研究[J]. 中国生物防治学报, 2021, 37(6): 1221-1230. [15] 曾庆伟, 温心怡, 吴小芹. 1株 Pseudomonas frederiksbergensis JW-SD2的解磷特性及解磷条件研究[J]. 微生物学杂志, 2016, 36(1): 11-16. [16] 赵昱榕, 谢学文, 许帅, 等. 皮尔瑞俄类芽胞杆菌ZF390对黄瓜细菌性软腐病的防治效果[J]. 中国生物防治学报, 2022, 38(2): 476-486. [17] 东秀珠, 洪俊华. 原核微生物的多样性[J]. 生物多样性, 2001(1): 18-24. [18] 黄艺烁, 谢学文, 石延霞, 等. 一株绿针假单胞菌桔黄亚种在防治番茄匍柄霉叶斑病中的应用[J]. 中国生物防治学报, 2021, 37(6): 1265-1275. [19] 赵子璇, 曾先锋, 覃诗扬, 等. 贝莱斯芽胞杆菌ZF438菌株的鉴定及其发酵上清液对辣椒炭疽病的抑菌作用[J]. 农业生物技术学报, 2023, 31(10): 2163-2175. [20] 柴阿丽, 张思雨, 李晓菁, 等. 十字花科根肿病生防菌副地衣芽胞杆菌ZF480的鉴定及其防效[J]. 植物保护学报, 2022, 49(03): 938-945. [21] 黄艺烁, 谢学文, 石延霞,等. 多粘类芽胞杆菌ZF197对白菜茎基腐病防治效果[J]. 园艺学报, 2020, 47(6): 1059-1071. [22] 赵卫松, 鹿秀云, 郭庆港, 等. 防治番茄灰霉病的枯草芽胞杆菌BAB-1粉尘剂研制[J]. 中国生物防治学报, 2018, 34(1): 99-108. [23] 闫建芳, 刘秋, 赵柏霞,等. 番茄溃疡病生防菌YH23的发酵条件优化及菌种鉴定[J]. 沈阳农业大学学报, 2019, 50(5): 608-613. [24] 张艳, 张维宏, 王松红, 等. 番茄溃疡病菌拮抗菌株Z-L-22的鉴定及其活性物质[J]. 微生物学报, 2009, 49(7): 889-895. [25] 黄勋, 刘霞, 邓琳梅, 等. 马铃薯疮痂病研究进展[J]. 植物病理学报, 2024,54(06):1083-1090. [26] 高同国, 姜军坡, 郭晓军, 等. 马铃薯疮痂病高效拮抗菌的筛选及鉴定[J]. 江苏农业科学, 2016, 44(12): 157-159. [27] 石莹莹, 赵盼, 宋双伟, 等. 马铃薯疮痂病拮抗菌YN-2-2的分离与鉴定[J]. 微生物学通报, 2020, 47(8): 2425-2435. [28] Liu B, Liu J, Ju M, et al. Purification and characterization of biosurfactant produced by Bacillus licheniformis Y-1 and its application in remediation of petroleum contaminated soil[J]. Marine Pollution Bulletin, 2016, 107(1): 46-51. [29] Cawoy H, Debois D, Franzil L, et al. Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens[J]. Microbial Biotechnology, 2015, 8(2): 281-95. [30] Hmidet N, Ayed H B, Jacques P, et al. Enhancement of surfactin and fengycin production by Bacillus mojavensis A21: application for diesel biodegradation[J]. BioMed Research International, 2017, 2017(3): 1-8. [31] Hanene R, Abdeljabbar H, Marc R, et al. Biological control of Fusarium foot rot of wheat using fengycin-producing Bacillus subtilis isolated from salty soil[J]. African Journal of Biotechnology, 2012, 11(34): 8464-8475. [32] 沈佳慧,乔俊卿,左杨,等. 贝莱斯芽胞杆菌YL2021高产嗜铁素的摇瓶发酵工艺优化[J]. 中国生物防治学报, 2023, 39(4): 861-874. [33] Zhou Y, Li Q, Peng Z, et al. Biocontrol effect of Bacillus subtilis YPS-32 on potato common scab and its complete genome sequence analysis[J]. Journal of Agricultural and Food Chemistry, 2022(17): 70. |