[1] Aleandri M P, Chilosi G, Bruni N, et al. Use of nursery potting mixes amended with local Trichoderma strains with multiple complementary mechanisms to control soil-borne diseases[J]. Crop Protection, 2015, 67:269-278. [2] 乔永旭, 张永平, 高丽红. 根系边缘细胞对肉桂酸胁迫下黄瓜和黑籽南瓜活性氧代谢与根系活力的影响[J]. 中国农业科学, 2015, 48(8):1579-1587. [3] Wu H S, Zhou X D, Shi X, et al. In vitro responses of Fusarium oxysporum f. sp. niveum to phenolic acids in decaying watermelon tissues[J]. Phytochemistry Letters, 2014, 8:171-178. [4] Kaur R, Kaur J, Singh R S. Nonpathogenic Fusarium as a biological control agent[J]. Plant Pathology Journal, 2011, 9(3):79-91. [5] Nelson H E. Multiple factors control the level of resistance induced in tomato by Fusarium oxysporum f. sp. cucumerinum[J]. BioControl, 2014, 59(5):625-633. [6] Mehta C M, Palni U, Franke-Whittle I H,et al. Compost:its role, mechanism and impact on reducing soil-borne plant diseases[J]. Waste Management, 2014, 34(3):607-622. [7] Gil S V, Meriles J, Conforto C, et al. Response of soil microbial communities to different management practices in surface soils of a soybean agroecosystem in Argentina[J]. European Journal of Soil Biology, 2011, 47(1):55-60. [8] 包妍妍, 云兴福, 张东东, 等. 西芹根物质浸提液处理后黄瓜叶片内几种氮代谢物质含量的变化[J]. 中国生态农业学报, 2012, 20(11):1508-1513. [9] Castano R, Borrero C, Trillas M I, et al. Selection of biological control agents against tomato Fusarium wilt and evaluation in greenhouse conditions of two selected agents in three growing media[J]. BioControl, 2013, 58(1):105-116. [10] Lou Y, Davis A S, Yannarell A C. Interactions between allelochemicals and the microbial community affect weed suppression following cover crop residue incorporation into soil[J]. Plant and Soil, 2016, 399(1/2):357-371. [11] Giraudo M, Hilliou F, Fricaux T, et al. Cytochrome P450s from the fall armyworm (Spodoptera frugiperda):responses to plant allelochemicals and pesticides[J]. Insect Molecular Biology, 2015, 24(1):115-128. [12] Senarathne S H S, Dissanayaka D N M, Vidhana Arachchi L P. Allelopathic potential of Brachiaria brizantha and B. milliformis on seed germination of selected bioassay species[J]. Pakistan Journal of Weed Science Research, 2010, 16(2):207-216. [13] 高晓敏, 王琚钢, 李杰, 等. 西芹鲜根丙酮浸提物层析流分对黄瓜枯萎病菌的化感作用以及化感物质鉴定[J]. 中国生态农业学报, 2014, 22(11):1364-1371. [14] 陈磊, 李蕾, 项鹏宇, 等. 西芹挥发物对黄瓜枯萎病菌的化感作用[J]. 生态学杂志, 2012, 31(4):877-881. [15] Ling N, Zhang W, Wang D, et al. Root exudates from grafted-root watermelon showed a certain contribution in inhibiting Fusarium oxysporum f. sp.niveum[J]. PLoS ONE, 2013, 8(5):e63383. [16] 陈业兵, 王金信, 吴小虎, 等. 银胶菊的花对稗草的化感作用及其化感物质分离与鉴定[J]. 植物保护学报, 2010, 37(1):73-77. [17] Wu H S, Shen S H, Han J M, et al. The effect in vitro of exogenously applied p-hydroxybenzoic acid on Fusarium oxysporum f. sp. niveum[J]. Phytopathologia Mediterranea, 2010, 48(3):439-446. [18] 吴洪生, 尹晓明, 刘东阳, 等. 镰刀菌酸毒素对西瓜幼苗根细胞跨膜电位及叶细胞有关抗逆酶的抑制[J]. 中国农业科学, 2008, 41(9):2641-2650. [19] 姚琴, 王美入, 杨家荣, 等. 韭菜等几种植物根系分泌物对棉花黄萎病菌的影响[J]. 植物保护, 2013, 39(6):37-42. [20] Yu J Q. Allelopathic suppression of Pseudomonas solanacearum infection of tomato (Lycopersicon esculentum) in a tomato-chinese chive (Allium tuberosum) intercropping system[J]. Journal of Chemical Ecology, 1999, 25(11):2409-2417. [21] Zhang H, Mallik A, Zeng R S. Control of Panama disease of banana by rotating and intercropping with Chinese chive (Allium tuberosum Rottler):role of plant volatiles[J]. Journal of Chemical Ecology, 2013, 39(2):243-252. [22] Bani M, Rispail N, Evidente A, et al. Identification of the main toxins isolated from Fusarium oxysporum f. sp. pisi race 2 and their relation with isolates' pathogenicity[J]. Journal of Agricultural and Food Chemistry, 2014, 62(12):2574-2580. [23] El-Hasan A, Walker F, Buchenauer H.Trichoderma harzianum and its metabolite 6-pentyl-alpha-pyrone suppress fusaric acid produced by Fusarium moniliforme[J]. Journal of Phytopathology, 2008, 156(2):79-87. [24] 朱晓红, 王朋, 梁文举, 等. 苜蓿化感作用的初步研究[J]. 生态学杂志, 2004, 23(3):128-130. [25] 侯永侠, 周宝利, 吴晓玲, 等. 辣椒根系分泌物化感作用的研究[J]. 沈阳农业学学报, 2007, 38(4):504-507. [26] Hao W Y, Ren L X, Ran W, et al. Allelopathic effects of root exudates from watermelon and rice plants onFusarium oxysporum f. sp.niveum[J]. Plant and Soil, 2010, 336(1/2):485-497. [27] Wu H S, Liu Y D, Yang X I,et al. Growthresponses of in vitro Fusarium oxysporum f. sp. niveumto external supply of tannic acid[J]. Journal of Environmental Biology, 2010, 31(6):1017-1022. [28] Sun J B, Peng M, Wang Y G, et al. Isolation and characterization of antagonistic bacteria against Fusarium wilt and induction of defense related enzymes in banana[J]. African Journal of Microbiology Research, 2011, 5(5):509-515. [29] Wang Z, Jia C, Li J,et al. Activation of salicylic acid metabolism and signal transduction can enhance resistance to Fusarium wilt in banana (Musa acuminata L.)[J]. Functional and Integrative Genomics, 2015, 15(1):47-62. [30] 谢明惠, 任琴, 张青文, 等. 紫茎泽兰根区土壤酚酸类物质组成及其对土传病菌的影响[J]. 应用生态学报, 2010, 21(2):306-311. [31] 周宝利, 尹玉玲, 李云鹏, 等. 嫁接茄根系分泌物与抗黄萎病的关系及其组分分析[J]. 生态学报, 2010, 30(11):3073-3079. [32] Aino M, Maekawa Y, Mayama S, et al. Biocontrol of Bacterial Wilt of Tomato by Producing Seedlings Colonized with Endophytic Antagonistic Pseudomonads[M]//Proceedings of the Fourth International Workshop on Plant Growth Promoting Rhizobacteria, Plant Growth Promoting Rhizobacteria:Present Status and Future Prospects. Nakanishi Printing, Sapporo, Japan, 1997, 120-123. [33] Mowlick S, Yasukawa H, Inoue T, et al. Suppression of spinach wilt disease by biological soil disinfestation incorporated with Brassica juncea plants in association with changes in soil bacterial communities[J]. Crop Protection, 2013, 54:185-193. |