[1] 陈楠, 潘晓静, 姚远, 等. 东北地区玉米茎腐病镰孢菌EF1区基因序列分析鉴定[J]. 玉米科学, 2015, 23(4):143-148. [2] 喻国辉, 程萍, 王燕鹂, 等. 一株香蕉枯萎病生防芽胞杆菌的鉴定、生物学特性和抗菌谱研究[J]. 中国农学通报, 2010, 26(12):216-220. [3] 黎永坚, 程萍, 喻国辉, 等. 枯草芽孢杆菌R31和TR21菌株防治香蕉枯萎病田间药效试验[J]. 广东农业科学, 2012, 39(23):70-72. [4] 陈川雁, 王燕, 喻国辉, 等. 枯草芽胞杆菌R31影响巴西蕉根系活性氧产生及对枯萎病的防治效果[J]. 中国生物防治学报, 2017, 33(2):226-233. [5] 李荣, 程萍, 喻国辉, 等. 枯草芽胞杆菌R31在香芽蕉根部的定殖能力测定[J]. 广东农业科学, 2012, 38(24):59-61. [6] 赵志国, 李一平, 喻国辉, 等. 枯草芽胞杆菌R31施用对中粉1号粉蕉根际微生物的影响[J]. 广东农业科学, 2014(17):83-87,105. [7] Bais H P, Fall R, Vivanco J M. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production[J]. Plant Physiology, 2004, 134(1):307-319. [8] 郭庆港, 吴园园, 李社增, 等. ywb 基因对枯草芽胞杆菌NCD-2菌株生物膜形成和根际定殖能力的影响[J]. 植物保护学报, 2013, 40(1):45-50. [9] Rudrappa T, Czymmek K J, Pare P W, et al. Root-secreted malic acid recruits beneficial soil bacteria[J]. Plant Physiology, 2008, 148(3):1547-1556. [10] Beauregard P B, Chai Y, Vlamakis H, et al. Bacillus subtilis biofilm induction by plant polysaccharides[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(17):1621-1630. [11] Rudrappa T, Quinn W J, Stanley-Wall N R, et al. Arabidopsis thaliana root surface chemistry regulates in planta biofilm formation of Bacillus subtilis[J]. Plant Signal and Behavior, 2007, 2(5):349-350. [12] Rudrappa T, Quinn W J, Stanley-Wall N R, et al. A degradation product of the salicylic acid pathway triggers oxidative stress resulting in down-regulation of Bacillus subtilis biofilm formation on Arabidopsis thaliana roots[J]. Planta, 2007, 226(2):283-297. [13] Stefanic P, Kraigher B, Lyons N A, et al. Kin discrimination between sympatric Bacillus subtilis isolates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(45):14042-14047. [14] Khezri M, Jouzani G S, Ahmadzadeh M. Fusarium culmorum affects expression of biofilm formation key genes in Bacillus subtilis[J]. Brazilian Journal of Microbiology, 2016, 47(1):47-54. [15] 樊胜南, 陈川雁, 喻国辉, 等. 井冈霉素A对枯草芽胞杆菌R31生长和生物被膜形成的影响[J]. 广东农业科学, 2018, 45(9):96-102. [16] 姚艳平. 枯萎病菌镰刀菌酸的产生和钝化及生物活性测定的研究[D]. 太原:山西农业大学, 2002. [17] 刘开军, 罗少波, 王亚琴, 等. 镰刀菌毒素对植物形态和结构的影响[J]. 中国农学通报, 2010, 26(4):53-56. [18] Wang H, Ng T B. Pharmacological activities of fusaric acid (5-butylpicolinic acid)[J]. Life Sciences, 1999, 65(9):849-856. [19] 李梅婷, 严琰, 张绍升. 香蕉枯萎病菌及其粗毒素对香蕉的致病性比较[J]. 热带作物学报, 2010, 31(3):446-452. [20] 许文耀, 兀旭辉, 林成辉. 香蕉枯萎病菌粗毒素的毒性及其模型[J]. 热带作物学报, 2004, 25(4):25-29. [21] 曹永军, 程萍, 喻国辉, 等. 香蕉枯萎病菌菌株致病力分化及其原因研究[J]. 热带作物学报, 2011, 32(8):1532-1536. [22] 漆艳香, 张欣, 蒲金基, 等. 10种化合物对香蕉枯萎病菌的抑菌作用及对毒素钝化的效果[J]. 果树学报, 2007, 25(1):78-82. [23] 姬华伟, 郑青松, 董鲜, 等. 铜、锌元素对香蕉枯萎病的防治效果与机理[J]. 园艺学报, 2012, 39(6):1064-1072. [24] Thangavelu R, Palaniswami A, Ramakrishnan G, et al. Involvement of fusaric acid detoxification by Pseudomonas fluorescens strain Pf10 in the biological control of Fusarium wilt of banana caused by Fusarium oxysporum f. sp. cubense[J]. Journal of Plant Diseases and Protection, 2001, 108(5):433-445. [25] 黎永坚, 杨紫红, 陈远凤, 等. 香蕉枯萎病菌粗毒素对地衣芽胞杆菌生长和培养液上清蛋白组成的影响[J]. 微生物学通报, 2009, 36(12):1826-1831. [26] Shemesh M, Chai Y. A combination of glycerol and manganese promotes biofilm formation in Bacillus subtilis via histidine kinase KinD signaling[J]. Journal of Bacteriology, 2013, 195(12):2747-2754. [27] Mhatre E, Gallegos-Monterrosa R, Kuipers O P, et al. The impact of manganese on biofilm development of Bacillus subtilis[J]. Microbiology, 2016, 162(8):1468-1478. [28] 李一平, 沈汉国, 喻国辉, 等. 一种芽胞杆菌生物被膜形成缺陷培养基的研究[J]. 广东农业科学, 2016, 43(9):98-104. [29] Hamon M A, Lazazzera B A. The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis[J]. Molecular Microbiology, 2001, 42(5):1199-1209. [30] 唐启义. DPSã数据处理系统:实验设计、统计分析及数据挖掘(第2版)[M]. 北京:科学出版社, 2010. [31] Lopez D, Vlamakis H, Kotler R. Generation of multiple cell types in Bacillus subtilis[J]. FEMS Microbiology Reviews, 2009, 33(1):152-163. [32] Murray E J, Kiley T B, Stanley-Wall N R. A pivotal role for the response regulator DegU in controlling multicellular behavior[J]. Microbiology, 2009, 155(1):1-8. [33] Kobayashi K, Iwano M. BslA(YuaB) forms a hydrophobic layer on the surface of Bacillus subtilis biofilms[J]. Molecular Microbiology, 2012, 85(1):51-66. [34] Eisenstadt E, Fisher S, Der C L, et al. Manganese transport in Bacillus subtilis W23 during growth and sporulation[J]. Journal of Bacteriology, 1973, 113(3):1363-1372. [35] Fisher S, Buxbaum L, Toth K, et al. Regulation of manganese accumulation and exchange in Bacillus subtilis W23[J]. Journal of Bacteriology, 1973, 113(3):1373-1380. [36] Oh Y K, Freese E. Manganese requirement of phosphoglycerate phosphomutase and its consequences for growth and sporulation of Bacillus subtilis[J]. Journal of Bacteriology, 1976, 127(2):739-746. [37] Akrigg A. Purification and properties of a manganese-stimulated deoxyribonuclease produced during sporulation of Bacillus subtilis[J]. The Biochemical Journal, 1978, 172(1):69-76. [38] Vasantha N, Freese E. The role of manganese in growth and sporulation of Bacillus subtilis[J]. Journal of General Microbiology, 1979, 112(2):329-336. [39] Guedon E, Moore C M, Que Q, et al. The global transcriptional response of Bacillus subtilis to manganese involves the MntR, Fur, TnrA and σB regulons[J]. Molecular Microbiology, 2003, 49(6):1477-1491. |