中国生物防治学报 ›› 2021, Vol. 37 ›› Issue (1): 11-29.DOI: 10.16409/j.cnki.2095-039x.2021.01.001
• 特邀综述 • 上一篇
农向群, 闫多子, 蔡霓, 王广君, 涂雄兵, 张泽华
收稿日期:
2020-04-21
发布日期:
2021-02-23
通讯作者:
张泽华,博士,研究员,E-mail:zhangzehua@caas.cn。
作者简介:
农向群,博士,研究员,E-mail:xqnong@sina.com
基金资助:
NONG Xiangqun, YAN Duozi, CAI Ni, WANG Guangjun, TU Xiongbing, ZHANG Zehua
Received:
2020-04-21
Published:
2021-02-23
摘要: 蝗虫是世界性重大成灾害虫,时常在草原、沙漠区或农作区暴发为害。当前的非洲沙漠蝗灾害再次提醒人们,蝗灾依然是粮食生产和生态安全的严重威胁。在寻求绿色可持续防蝗的新策略新技术研究中,昆虫病原真菌显现出种类多、毒力强、易规模化生产及环境友好等明显优势而倍受重视。近30年,真菌防蝗研究和应用进步加快,国际、国内都有真菌防蝗产品的注册登记和大规模应用。本文综述了真菌杀虫机理、防蝗菌株选育、规模化生产及应用进展,分析了存在的问题,提出了在蝗虫幼龄期施菌干预种群发展的建议,展望了未来发展前景,为蝗灾绿色防控提供参考。
中图分类号:
农向群, 闫多子, 蔡霓, 王广君, 涂雄兵, 张泽华. 真菌防治蝗虫研究进展[J]. 中国生物防治学报, 2021, 37(1): 11-29.
NONG Xiangqun, YAN Duozi, CAI Ni, WANG Guangjun, TU Xiongbing, ZHANG Zehua. Research Progress on Control of Locusts with Entomopathogenic Fungi[J]. Chinese Journal of Biological Control, 2021, 37(1): 11-29.
[1] 洪军,杜桂林,王广君.我国草原蝗虫发生与防治现状分析[J].草地学报, 2014, 22(5):929-934. [2] 联合国粮农组织. http://www.fao.org/ag/locusts/en/info/info/index.html. [3] 陈永林.蝗虫灾害的特点、成因和生态学治理[J].生物学通报, 2000, 35(7):1-5. [4] Sir B U. Grasshopper and Locusts-A Handbook of General Acridology[EB/OL]. Centre for Overseas Pest Research, 1977, 1-28. [5] Showler A. Desert Locust, Schistocerca Gregaria Forskal (Orthoptera:Acrididae) Plagues[M]. Amsterdam:Springer, 2005, 682-685. [6] 陈永林.警惕沙漠蝗的猖獗发生[J].昆虫知识, 2002, 39(5):335-339. [7] 联合国粮食及农业组织[EB/OL]. http://www.fao.org/locusts/zh/(2020-01-31). [8] Evans E W. Interactions among grasshoppers (Orthoptera:Acrididae) in intermountain grassland of western north America[J]. Oikos, 1995, 73(1):73-78. [9] 陈永林.中国主要蝗虫及蝗灾的生态学治理[M].北京:科学出版社, 2007, 2-3. [10] 蒲蛰龙,李增智.昆虫真菌学[M].合肥:安徽科学技术出版社, 1996, 2-17. [11] Qu S, Wang S. Interaction of entomopathogenic fungi with the host immune system[J]. Developmental & Comparative Immunology, 2018, 83(1):96-103. [12] Leger R J S, Goettel M, Roberts D W, et al. Prepenetration events during infection of host cuticle by Metarhizium anisopliae[J]. Journal of Invertebrate Pathology, 1991, 58(2):168-179. [13] Holder D J, Keyhani N O. Adhesion of the entomopathogenic fungus Beauveria(Cordyceps) bassiana to substrata[J]. Applied and Environmental Microbiology, 2005, 71(9):5260-5266. [14] St Leger R J, Staples R C, Roberts D W. Cloning and regulatory analysis of starvation-stress gene, ssgA, encoding a hydrophobin-like protein from the entomopathogenic fungus, Metarhizium anisopliae[J]. Gene, 1992, 120(1):119-124. [15] Wang C, St Leger R J. The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the mad2 adhesin enables attachment to plants[J]. Eukaryotic Cell, 2007, 6(5):808-816. [16] Ying S H, Feng M G. A conidial protein (CP15) of Beauveria bassiana contributes to the conidial tolerance of the entomopathogenic fungus to thermal and oxidative stresses[J]. Applied Microbiology & Biotechnology, 2011, 90(5):1711-1720. [17] Wang C, Wang S. Insect pathogenic fungi:genomics, molecular interactions, and genetic improvements[J]. Annual Review of Entomology, 2017, 62(1):73-90. [18] Charnley A K, St Leger R J. The Role of Cuticle-degrading Enzymes in Fungal Pathogenesis in Insects[M]. Springer, 1991. [19] Joshi L, Leger R J S, Roberts D W. Isolation of a cDNA encoding a novel subtilisin-like protease (Pr1B) from the entomopathogenic fungus, Metarhizium anisopliae using differential display-RT-PCR[J]. Gene, 1997, 197(1/2):1-8. [20] Charnley A K, Cobb B, Clarkson J M. Towards the improvement of fungal insecticides BCPC symposium proceedings[J]. British Crop Protection Council, 1997, 68:115-126. [21] Shah F A, Wang C S, Butt T M. Nutrition influences growth and virulence of the insect-pathogenic fungus Metarhizium anisopliae[J]. FEMS Microbiology Letters, 2005, 251(2):259-266. [22] St Leger R J, Joshi L. The application of molecular techniques to insect pathology with emphasis on entomopathogenic fungi[M]//Lacey L A, ed. Manual of Techniques in Insect Pathology. Academic Press, 1997, 367-394. [23] St Leger R, Joshi L, Bidochka M J, et al. Construction of an improved mycoinsecticide overexpressing a toxic protease[J]. Proceedings of the National Academy of Sciences, 1996, 93(13):6349-6354. [24] St Leger R J, Staples R C, Roberts D W. Entomopathogenic isolates of Metarhizium anisopliae, Beauveria bassiana, and Aspergillus flavus produce multiple extracellular chitinase isozymes[J]. Journal of Invertebrate Pathology, 1993, 61(1):81-84. [25] Qazi S S, Khachatourians G G. Hydrated conidia of Metarhizium anisopliae release a family of metalloproteases[J]. Journal of Invertebrate Pathology, 2007, 95(1):48-59. [26] 侯成香,覃光星,刘挺,等.昆虫对病原真菌的防御机制研究进展[J].安徽农业科学, 2012, 40(23):123-126. [27] Zhang W, Zheng X, Chen J, et al. Spatial and temporal transcriptomic analyses reveal locust initiation of immune responses to Metarhizium acridum at the pre-penetration stage[J]. Developmental and Comparative Immunology, 2020,104, doi.org/10.1016/j.dci.2019.103524. [28] Mburu D M, Maniania N K, Hassanali A. Comparison of volatile blends and nucleotide sequences of two Beauveria bassiana isolates of different virulence and repellency towards the termite Macrotermes michealseni[J]. Journal of Chemical Ecology, 2013, 39(1):101-108. [29] Tragust S, Mitteregger B, Barone V, et al. Ants disinfect fungus-exposed brood by oral uptake and spread of their poison[J]. Current Biology, 2013, 23(1):76-82. [30] Blanford S, Thomas M B. Host thermal biology:the key to understanding host-pathogen interactions and microbial pest control?[J]. Agricultural & Forest Entomology, 1999, 1(3):195-202. [31] Wang Y, Yang P, Cui F, et al. Altered immunity in crowded locust reduced fungal (Metarhizium anisopliae) Pathogenesis[J]. PLoS Pathogens, 2013, 9(1):e1003102. [32] Pilz C, Enkerli J, Wegensteiner R, et al. Establishment and persistence of the entomopathogenic fungus Metarhizium anisopliae in maize fields[J]. Journal of Applied Entomology, 2011, 135(6):393-403. [33] Lemaitre B, Hoffmann J. The host defense of Drosophila melanogaster[J]. Annual Review of Immunology, 2007, 25(1):697-743. [34] Valanne S, Wang J H, Ramet M. The Drosophila toll signaling pathway[J]. The Journal of Immunology, 2011, 186(2):649-656. [35] Palmer W J, Jiggins F M. Comparative genomics reveals the origins and diversity of arthropod immune systems[J]. Molecular Biology and Evolution, 2015, 32(8):2111-2129. [36] Schuhmann B, Seitz V, Vilcinskas A, et al. Cloning and expression of gallerimycin, an antifungal peptide expressed in immune response of greater wax moth larvae, Galleria mellonella[J]. Archives of Insect Biochemistry and Physiology, 2003, 53:125-133. [37] Yu K H, Kim K N, Lee J H, et al. Comparative study on characteristics of lysozymes from the hemolymph of three lepidopteran larvae, Galleria mellonella, Bombyx mori, Agrius convolvuli[J]. Developmental and Comparative Immunology, 2002, 26(8):707-713. [38] Pendland J C, Hung S Y, Boucias D G. Evasion of host defense by in vivo-produced protoplast-like cells of the insect mycopathogen Beauveria bassiana[J]. Journal of Bacteriology, 1993, 175(18):5962-5969. [39] Gillespie J P, Burnett C, Charnley A K. The immune response of the desert locust Schistocerca gregaria during mycosis of the entomopathogenic fungus, Metarhizium anisopliae var acridum[J]. Journal of Insect Physiology, 2000, 46(4):429-437. [40] Pal S, St Leger R J, Wu L P. Fungal peptide destruxin a plays a specific role in suppressing the innate immune response in Drosophila melanogaster[J]. Journal of Biological Chemistry, 2007, 282(12):8969-8977. [41] Li Z L, Wang Z K, Peng G X, et al. Purification and characterization of a novel thermostable extracellular protein tyrosine phosphatase from Metarhizium anisopliae strain CQMa102[J]. Bioscience Biotechnology & Biochemistry, 2006, 70(8):1961-1968. [42] Luc P J, Matthieu J, Gemma B, et al. Acid trehalase in yeasts and filamentous fungi:localization, regulation and physiological function[J]. FEMS Yeast Research, 2005, 5(6/7):503-511. [43] St Leger R J, Joshi L, Roberts D W. Ambient pH is a major determinant in the expression of cuticle-degrading enzymes and hydrophobin by Metarhizium anisopliae[J]. Applied & Environmental Microbiology, 1998, 64(2):709-713. [44] Screen S E, Nelson J O, St Leger R J. The entomopathogenic fungus Metarhizium anisopliae alters ambient pH, allowing extracellular protease production and activity[J]. Microbiology, 1999, 145(10):2691-2699. [45] Strand M R. The insect cellular immune response[J]. Insect Science, 2008, 15(1):1-14. [46] 王海川,尤民生.绿僵菌对昆虫的入侵机理[J].微生物学通报, 1999, 26(1):71-73. [47] Wang C, Leger R J S. A collagenous protective coat enables Metarhizium anisopliae to evade insect immune responses[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(17):6647-6652. [48] 钟可.莱氏野村菌抑制棉铃虫先天免疫机理的研究[D].武汉:华中师范大学, 2018. [49] Pedras M S C, Zaharia L I, Ward D E. The destrusins:synthesis, biosynthesis, biotransf ormation and biological activity[J]. Phytochemistry, 2002, 59:579-596. [50] 尹飞,胡琼波,钟国华,等.昆虫病原真菌抗血淋巴免疫的机理[J].中国生物防治, 2009, 25(S1):63-70. [51] Hung S Y, Boucias D G, Vey A J. Effect of Beauveria bassiana and candida albicans on the cellular defense response of spodoptera exigua[J]. Journal of Invertebrate Pathology, 1993, 61(2):179-187. [52] Gillespie J P, Bailey A M, Cobb B, et a1. Fungi as elicitor of insect immune responses[J]. Archives Insect Biochemistry and Physiology, 2000, 44:49-68. [53] Vilcinskas A, Matha V, Götza P. Effects of the entomopathogenic fungus Metarhizium anisopliae and its secondary metabolites on morphology and cytoskeleton of plasmatocytes isolated from the greater wax moth, Galleria mellonella[J]. Journal of Insect Physiology, 1997, 43(12):1149-1159. [54] Bradfisch G A, Harmer S L. Omega-Conotoxin GVIA and nifedipine inhibit the depolarizing action of the fungal metabolite, destruxin B on muscle from the tobacco budworm (Heliothis virescens)[J]. Toxicon, 1990, 28(11):1249-1254. [55] Sloman I S, Reynolds S E. Inhibitor of ecdysteroid secretion from Manduca prothoraccic glands in nitro by destrusins, cyclic depsipeptide toxins from the insect pathogenic fungus, Metarhizium anisopliae[J]. Insect Biochemistry and Molecular Biology, 1993, 23:43-46. [56] Taylor J W. Making the deuteromycota redundant:a practical integration of mitosporic and meiosporic fungi[J]. Canadian Journal of Botany, 1995, 73(1):754-759. [57] Blackwell M, Hibbett D S, Taylor J W, et al. Research coordination networks:a phylogeny for kingdom fungi (Deep Hypha)[J]. Mycologia, 2006, 98(6):829-837. [58] Hibbett D S, Binder M. A higher-level phylogenetic classification of the Fungi[J]. Mycological Research, 2007, 111(5):509-547. [59] Vega F E, Meyling N V, Luangsa-Ard J J, et al. Fungal Entomopathogens[M]//Fernando V E, Kaya H K, eds. Academic Press, 2012. [60] Hirt R P, Logsdon Jr. J M, Healy B, et al. Microsporidia are related to fungi:Evidence from the largest subunit of RNA polymerase II and other proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(2):580-585. [61] Lee S C, Corradi N, Doan S, et al. Evolution of the sex-related locus and genomic features shared in microsporidia and fungi[J]. PLoS ONE, 2010, 5(5):e10539. [62] Bischoff J F, Humber R R A. A multilocus phylogeny of the Metarhizium anisopliae lineage[J]. Mycologia, 2009, 101(4):512-530. [63] Oda H, Hatakeyama Y, Yamamoto Y, et al. Phylogenetic relationships among strains of the entomopathogenic fungus Beauveria bassiana(Hypocreales:Clavicipitaceae) isolated from Japan[J]. Applied Entomology & Zoology, 2014, 49:213-221. [64] Lomer C J, Bateman R P, Johnson D L, et al. Biological control of locusts and grasshoppers[J]. Annual Review of Entomology, 2001, 46(1):667-702. [65] Driver F, Milner R J, Trueman J W H. A taxonomic revision of Metarhizium based on a phylogenetic analysis of rDNA sequence data[J]. Mycological Research, 2000, 104(2):134-150. [66] Milner R J, Prior C. Susceptibility of the Australian plague locust, chortoicetes terminifera, and the wingless grasshopper, phaulacridium vittatum, to the fungi Metarhizium spp.[J]. Biological Control, 1994, 4(2):132-137. [67] Milner R J, Staples J A, Prior C. Laboratory susceptibility of Locusta migratoria(L.), Austracris guttulosa (Walker) and Valanga irregularis(Walker)(Orthoptera:Acrididae) to an oil formulation of Metarhizium flavoviride Gams and Rozsypal (Deuteromycotina:Hyphomycetes)[J]. Australian Journal of Entomology, 1996, 35(4):355-360. [68] 陆庆光,邓春生,张爱文,等.四种不同绿僵菌菌株对东亚飞蝗毒力的初步观察[J].生物防治通报, 1993, 9(4):187. [69] 田甜,李瑞军,陆秀君,等.保定蝗区土壤绿僵菌对飞蝗高毒力菌株的筛选[J].植物保护, 2009, 35(5):65-69. [70] 侯颖,夏彦飞,徐建强,等.一株绿僵菌的鉴定、生物学特性及对东亚飞蝗的致病力[J].中国生物防治学报, 2015, 31(3):333-339. [71] 陶星虎.蝗绿僵菌耐热突变菌株筛选[D].重庆:重庆大学, 2014. [72] Messias C L, Azevedo J L. Parasexuality in the deuteromycete Metarhizium anisopliae[M]. Transactions of the British Mycological Society, 1980, 75(3):473-477. [73] 农向群,张泽华,胡攀,等.航天诱变对昆虫病原真菌的生物学效应[J].菌物学报, 2006, 25(4):674-681. [74] 吴正铠,邓春生.白僵菌原生质体的形成与再生[J].生物防治通报, 1986(4):186. [75] 农向群,吴正铠,包建中.金龟子绿僵菌原生质体形成和再生的研究[J].微生物学通报, 1990(2):76-80. [76] Sirisha S, Kaur S G, Palem P C P. Strain improvement of entomopathogenic fungal species Beauveria bassiana and Metarhizium anisopliae by protoplast fusion[J]. International Journal of Applied Biology & Pharmaceutical Technology, 2010(3):1135-1143. [77] 车振明,王燕,周黎黎,等.原生质体紫外诱变选育蛹虫草新菌种的研究[J].食品与发酵工业, 2004, 30(8):35-38. [78] Goettel M S, Leger R J S, Bhairi S, et al. Pathogenicity and growth of Metarhizium anisopliae stably transformed to benomyl resistance[J]. Current Genetics, 1990, 17(2):129-132. [79] Wang C, St Leger R J. A scorpion neurotoxin increases the potency of a fungal insecticide[J]. Nature Biotechnology, 2007, 25(12):1455-1456. [80] Peng G, Xia Y. Integration of an insecticidal scorpion toxin (Bjα IT) gene into Metarhizium acridum enhances fungal virulence towards Locusta migratoria manilensis[J]. Pest Management Science, 2014, 71(1):58-64. [81] Wang S, Fang W, Wang C, et al. Insertion of an esterase gene into a specific locust pathogen (Metarhizium acridum) enables it to infect caterpillars[J]. PLoS Pathogens, 2011, 7(6):e1002097. [82] Tseng M N, Chung P C, Tzean S S. Enhancing the stress tolerance and virulence of an entomopathogen by metabolic engineering of dihydroxynaphthalene melanin biosynthesis genes[J]. Applied & Environmental Microbiology, 2011, 77(13):4508-4519. [83] Fang W, St Leger R J, Hansen I A. Enhanced UV resistance and improved killing of malaria mosquitoes by photolyase transgenic entomopathogenic fungi[J]. PLoS ONE, 2012, 7(8):e43069. [84] Furlaneto M C, Fernanda G P, Fabiana G da S P, et al. Transformation of the entomopathogenic fungus Metarhizium flavoviride to high resisance to benomyl[J]. Canadian Journal of Microbiology, 1999, 45(10):875-878. [85] Sala A, Barrena R, Artola A, et al. Current developments in the production of fungal biological control agents by solid-state fermentation using organic solid waste[J]. Critical Reviews in Environmental Science and Technology, 2019, 49(8):655-694. [86] Goettel M S, Roberts D W. Mass Production, Formulation and Field Application of Entomopathogenic Fungi[M]//Biological Control of Locusts and Grasshoppers. UK:CAB International, 1992. [87] Ibrahim Y B, Low W. Potential of mass production and field efficacy of isolates of the entomopathogenic fungi Beauveria bassiana and Paecilomyces fumosoroseus against Plutella xylostella[M]. International Journal of Pest Management, 1993, 39:288-292. [88] Ouedraogo A, Fargues J, Goettel M S, et al. Effect of temperature on vegetative growth among isolates of Metarhizium anisopliae and M. flavoviride[J]. Mycopathologia, 1997, 137(1):37-43. [89] 王乔,王海胜,农向群,等.金龟子绿僵菌IMI330189液体发酵动力学研究[J].菌物学报, 2012, 31(3):398-404. [90] 杨腊英,甘露,刘丽,等.金龟子绿僵菌菌株生长环境变量的优化[J].生态学杂志, 2008, 27(8):1322-1326. [91] 吴振强.金龟子绿僵菌固态培养生物变量优化研究[J].中国植保导刊, 2004(8):47. [92] 农向群,涂雄兵,张泽华,等.绿僵菌R8-4菌株大量培养固相阶段的条件[J].中国生物防治, 2007, 23(3):228-232.. [93] Barra-Bucarei L, Vergara P, Cortes A. Conditions to optimize mass production of Metarhizium anisopliae(Metschn.) Sorokin 1883 in different substrates[J]. Chilean Journal of Agricultural Research, 2016, 76(4):448-454. [94] Muñiz-Paredes F, Miranda-Hernández F, Loera O. Production of conidia by entomopathogenic fungi:from inoculants to final quality tests[J]. World Journal of Microbiology & Biotechnology, 2017, 33(3):57. [95] Zhang S, Peng G, Xia Y. Microcycle conidiation and the conidial properties in the entomopathogenic fungus Metarhizium acridum on agar medium[J]. Biocontrol Science & Technology, 2010, 20(8):809-819. [96] Jaronski S T. Opportunities for microbial control of pulse crop pests[J]. Annals of the Entomological Society of America, 2018, 111(4):228-237. [97] 张功营,杨华,董丽红,等.响应面法优化绿僵菌产绿僵菌素A的培养条件[J].华南农业大学学报, 2018, 39(1):76-82. [98] Téllez-Martínez M G, Lcala-Gómez G, Jiménez-Islas H, et al. Design of an efficient fermentation process for the production of Metarhizium acridum blastospores[J]. Biocontrol Science and Technology, 2016, 26(12):1-33. [99] 农向群,张英财,王以燕.国内外杀虫绿僵菌制剂的登记现状与剂型技术进展[J].植物保护学报, 2015, 42(5):702-714. [100] Moore D. A plague on locusts-the lubilosa story[J]. Outlooks on Pest Management, 2008, 19(1):14-17. [101] 邱星辉,康乐,李鸿昌.内蒙古草原主要蝗虫的防治经济阈值[J].昆虫学报, 2004, 47(5):595-598. [102] 余鸣.草原蝗虫生态阈值研究[D].北京:中国农业科学院, 2006. [103] 李广.亚洲小车蝗为害草场损失估计分析的研究[D].北京:中国农业科学院, 2007. [104] Jia M, Cao G, Li Y, et al. Biochemical basis of synergism between pathogenic fungus Metarhizium anisopliae and insecticide chlorantraniliprole in Locusta migratoria(Meyen)[J]. Scientific Reports, 2016, 6:28424. [105] 彭国雄.杀蝗绿僵菌生物农药研制及其应用技术研究[D].重庆:重庆大学, 2008. [106] Thomas M B, Wood S N, Langewald J, et al. Persistence of Metarhizium flavoviride and consequences for biological control of grasshoppers and locusts[J]. Pesticide Science, 1997, 49(1):47-55. [107] Guerrero-Guerra C, Reyes-Montes M R, Toriello C, et al. Study of the persistence and viability of Metarhizium acridumin Mexico's agricultural area[J]. Aerobiologia, 2013, 29(2):249-261. [108] 苏宇,农向群,张泽华,等.绿僵菌M189菌株特异性SCAR标记的建立及田间监测应用[J].菌物学报, 2012, 31(3):366-373. [109] 蔡霓,王峰,农向群,等.金龟子绿僵菌在草原羊草和克氏针茅根际的种群动态和根内宿存鉴定[J]. 植物保护, 2018, 44(6):32-37. [110] 王洁,涂雄兵,范要丽,等.绿僵菌在蝗虫种群中传播流行与其持续控制作用[J].草业与畜牧, 2015(3):38-45. [111] Matthews G A. The pesticide referee group of FAO and its contribution to locust control[J]. Journal of Orthoptera Research, 2005, 14(2):203-206. [112] 明德南.新发现的真菌能控制蝗虫虫口密度[J].世界热带农业信息, 2011(10):26. [113] Lomer C J, Bateman R P, Johnson D L, et al. Biological control of locusts and grasshoppers[J]. Annual Review of Entomology, 2001, 46(1):667-702. [114] Hunter D M, Milner R J, Scanlan J C, et al. Aerial treatment of the migratory locust, Locusta migratoria (L.)(Orthoptera:Acrididae) with Metarhizium anisopliae(Deuteromycotina:Hyphomycetes) in Australia[J]. Crop Protection, 1999, 18(10):699-704. [115] Zhang L, Hunter D M. Laboratory and field trials of Green Guard?(Metarhizium anisopliae var. acridum)(Deuteromycotina:Hyphomycetes) against the oriental migratory locust (Locusta migratoria manilensis)(Orthoptera:Acrididae) in China[J]. Journal of Orthoptera Research, 2005, 14(1):27-30. [116] Brunner-Mendoza C, Reyes-Montes M del R, Moonjely S, et al. A review on the genus Metarhizium as an entomopathogenic microbial biocontrol agent with emphasis on its use and utility in Mexico[J]. Biocontrol Science & Technology, 2019, 29(1):83-102. [117] Gesraha M A. Impact of entomopathogenic fungi on the desert locust, Schistocerca gregaria(Forskal)[J]. Egyptian Journal of Biological Pest Control, 2007, 17(1/2):83-89. [118] 陆庆光,邓春光,陈长风.应用绿僵菌防治东亚飞蝗田间试验[J].昆虫天敌, 1996, 18(4):2-5. [119] 张克勤.中国虫生真菌的发掘现状与展望[C].中国植物保护学会论文集, 1995, 30-34. [120] 李保平,罗伊·贝特曼,李国有,等.绿僵菌油剂防治草原蝗虫的田间试验[J].新疆农业科学, 2000(S1):153. [121] 王海霞.绿僵菌油悬浮剂对蝗虫的防效[J].新疆农业科技, 2017(1):39-40. [122] 张泽华,高松,张刚应,等.应用绿僵菌油剂防治内蒙草原蝗虫的效果[J].中国生物防治, 2000, 16(2):49-52. [123] 刘宗祥,常明,代建聪,等.绿僵菌防治草原蝗虫田间效果[J].草业科学, 2004, 21(8):68-70. [124] 李根林,程亚樵,夏立,等.杀蝗绿僵菌油剂防治黄河滩区东亚飞蝗效果研究初报[J].中国农学通报, 2006, 22(4):359-361. [125] 程亚樵,孙元峰,夏立,等. 3种生物农药及植物源农药防治东亚飞蝗效果评价[J].中国农学通报, 2007, 23(1):262-264. [126] 陈亿兵,金焕贵,刘颖.白僵菌油悬浮剂防治草原蝗虫药效评价[J].黑龙江农业科学, 2012(4):80-81. [127] 陈瑞屏,刘清浪,黄焕华.三种昆虫病原微生物防治黄脊竹蝗试验[J].昆虫天敌, 2002, 24(3):123-127. [128] Milner R J, Hunter D M. Recent developments in the use of fungi as biopesticides against locusts and grasshoppers in Australia[J]. Journal of Orthoptera Research, 2001, 10(2):271-276. [129] 宋树人,张泽华,高松,等.绿僵菌药后草原蝗虫种群空间分布型研究[J].昆虫学报, 2008, 51(8):883-888. |
[1] | 彭国雄, 张淑玲, 夏玉先. 金龟子绿僵菌CQMa421农药及应用情况[J]. 中国生物防治学报, 2020, 36(6): 850-857. |
[2] | 徐文静, 隋丽, 高鹏, 张荣宝, 王曌, 张正坤, 李启云. 球孢白僵菌可湿性粉剂防治玉米螟的研究与应用[J]. 中国生物防治学报, 2020, 36(6): 862-865. |
[3] | 占军平, 张安明, 邓方坤, 卢森, 孙修炼. 甘蓝夜蛾核型多角体病毒悬浮剂防治草地贪夜蛾的应用与推广[J]. 中国生物防治学报, 2020, 36(6): 872-873. |
[4] | 武凤霞, 刘婧怡, 李吉进, 丁建莉, 张淑彬, 魏丹, 刘建斌. 堆肥茶生防作用影响因素及应用前景探讨[J]. 中国生物防治学报, 2020, 36(6): 972-980. |
[5] | 刘梅, 张昌容, 尚小丽, 郭军, 曾广, 石乐娟. 南方小花蝽对非洲菊上西花蓟马控制效果评价[J]. 中国生物防治学报, 2020, 36(6): 992-996. |
[6] | 阿尔孜姑丽·肉孜, 吐尔逊·阿合买提, 付开赟, 丁新华, 阿地力·沙塔尔, 郭文超. 新疆玉米种植区瓢虫资源调查及多样性分析[J]. 中国生物防治学报, 2020, 36(5): 697-707. |
[7] | 孙元星, 郝亚楠, 李明凌. 贮藏前补充人工饲料对七星瓢虫低温耐受力的影响[J]. 中国生物防治学报, 2020, 36(5): 708-713. |
[8] | 汪章勋, 徐秀珍, 冯健雨, 周权, 黄勃. MrXrn1基因参与调控罗伯茨绿僵菌的产孢和致病[J]. 中国生物防治学报, 2020, 36(5): 721-728. |
[9] | 李贝贝, 田野, 杜桂林, 岳方正, 农向群, 刘廷辉, 张泽华, 王广君. 丝氨酸蛋白酶抑制剂Serpin1对绿僵菌侵染飞蝗的影响[J]. 中国生物防治学报, 2020, 36(5): 729-736. |
[10] | 许帅, 谢学文, 张昀, 石延霞, 柴阿丽, 李磊, 李宝聚. 马铃薯枯萎病生防芽胞杆菌筛选及生防效果研究[J]. 中国生物防治学报, 2020, 36(5): 761-770. |
[11] | 郭义, 赵灿, 李君摘, 李敦松. 蠋蝽对荔枝蝽一龄若虫的捕食功能反应[J]. 中国生物防治学报, 2020, 36(5): 826-831. |
[12] | 田俊策, 鲁艳辉, 王国荣, 郑许松, 杨亚军, 徐红星, 方琦, 叶恭银, 臧连生, 吕仲贤. 种赤眼蜂对草地贪夜蛾卵的寄生能力研究[J]. 中国生物防治学报, 2020, 36(4): 485-490. |
[13] | 路子云, 杨小凡, 马爱红, 冉红凡, 刘文旭, 李建成. 管侧沟茧蜂对不同日龄草地贪夜蛾幼虫的寄生效果[J]. 中国生物防治学报, 2020, 36(4): 491-495. |
[14] | 杨磊, 李芬, 吴少英. 草地贪夜蛾寄生蜂资源及其调控寄主免疫反应的研究[J]. 中国生物防治学报, 2020, 36(4): 496-506. |
[15] | 黄潮龙, 汤印, 何康来, 王振营. 双斑青步甲幼虫对草地贪夜蛾幼虫的捕食能力[J]. 中国生物防治学报, 2020, 36(4): 507-512. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 《中国生物防治学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发
技术支持:support@magtech.com.cn