[1] 胡东维, 梁五生, 赖朝晖. 稻曲病菌成灾机制与防控技术研究进展[J]. 植物保护, 2018, 44:1-5. [2] 黄世文. "一浸两喷、叶枕平定时"精准高效防控稻曲病等水稻后期病害[J]. 农药市场信息, 2020(12):53-54. [3] 张正炜, 陈秀, 沈慧梅, 等. 我国稻曲病分级标准的研究与应用现状[J]. 中国稻米, 2020, 26(4):18-21. [4] 张俊喜, 成晓松, 高波, 等. 江苏水稻稻曲病综合防控技术[J]. 大麦与谷类科学, 2018, 35(4):31-34. [5] 贺雄, 丁朝辉, 胡立冬, 等. 生物与化学农药对早稻主要病害绿色防控技术初探[J]. 农药, 2020, 59(1):68-73. [6] 俞咪娜, 黄世文, 刘永锋. 稻曲病菌致病机制研究进展[J]. 植物病理学报, 2019, 49(6):721-729. [7] 陈旭, 邱结华, 熊萌, 等. 稻曲病研究进展[J]. 中国稻米, 2019, 25(5):30-36. [8] 王以燕, 袁善奎, 李友顺, 等. 美国EPA登记的生物农药有效成分名录[J]. 农药科学与管理, 2009, 30(8):1-11. [9] 袁善奎, 王以燕, 师丽红. 我国生物源农药标准制定现状及展望[J]. 中国生物防治学报, 2018, 34(1):1-7. [10] 郭继平, 马光, 王志杰, 等. 一株解淀粉芽胞杆菌生防蛋白的鉴定及分析[J]. 生物技术通报, 2018, 34:202-207. [11] Ait Kaki A, Smargiasso N, Ongena M, et al. Characterization of new fengycin cyclic lipopeptide variants produced by Bacillus amyloliquefaciens (ET) originating from a Salt Lake of Eastern Algeria[J]. Current Microbiology, 2020, 77:443-451. [12] Lange J, Olsson O, Sweeney B, et al. Fluorescent tracers to evaluate pesticide dissipation and transformation in agricultural soils[J]. Science of the Total Environment, 2018, 619:1682-1689. [13] Ding L, Guo W, Chen X. Exogenous addition of alkanoic acids enhanced production of antifungal lipopeptides in Bacillus amyloliquefaciens Pc3[J]. Applied Microbiology Biotechnology, 2019, 103:5367-5377. [14] Wang Y F, Zhu X Y, Bie X M, et al. Preparation of microcapsules containing antimicrobial lipopeptide from Bacillus amyloliquefaciens ES-2 by spray drying[J]. LWT-Food Science and Technology, 2014, 56(2):502-507. [15] 尹小乐, 陈志谊, 刘永锋, 等. 稻曲病拮抗细菌的筛选与评价[J]. 江苏农业学报, 2011, 27(5):983-989. [16] 李晶, 魏松红, 徐清云, 等. 稻曲病生防菌的筛选与鉴定[J]. 农药, 2020, 59(9):676-679. [17] 沙月霞, 隋书婷, 曾庆超, 等. 贝莱斯芽胞杆菌E69预防稻瘟病等多种真菌病害的潜力[J]. 中国农业科学, 2019, 52(11):1908-1917. [18] 朱哲远, 彭迪, 李祖任, 等. 水稻稻曲病菌拮抗菌的分离、筛选与抑菌活性测定[J]. 湖南农业科学, 2017(12):85-87. [19] Kunst F, Rapoport G. Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis[J]. Journal of Bacteriology, 1995, 177:2403-2407. [20] Zhang R S, Liu Y F, Luo C P, et al. Bacillus amyloliquefaciens Lx-11, a potential biocontrol agent against rice bacterial leaf streak[J]. Journal of Plant Pathology, 2012, 94(3):609-619. [21] Wu K, Fang Z, Guo R, et al. Pectin enhances bio-control efficacy by inducing colonization and secretion of secondary metabolites by Bacillus amyloliquefaciens SQY 162 in the Rhizosphere of tobacco[J]. PLoS ONE, 2015, 10(5):e0127418 [22] 杨洪凤, 薛雅蓉, 余向阳, 等. 内生解淀粉芽胞杆菌CC09菌株在小麦叶部的定殖能力及其防治白粉病效果研究[J]. 中国生物防治学报, 2014, 30(4):481-488. [23] Luisa F, Posada J C, Álvarez, et al. Enhanced molecular visualization of root colonization and growth promotion by Bacillus subtilis EA-CB0575 in different growth systems[J]. Microbiological Research, 2018, 217:69-80. [24] Priyanka P, Ranjana B, Madhu K, et al. Cross-competence and affectivity of maize rhizosphere bacteria Bacillus sp. MT7 in tomato rhizosphere[J]. Scientia Horticulturae, 2020, 272:109480. [25] 王亚会, 孟祥坤, 刘永锋, 等. 八株芽胞杆菌的鉴定及其生物活性差异比较[J]. 中国生物防治学报, 2014, 30(3):376-384. [26] Yong M L, Deng Q D, Fan L L, et al. The role of Ustilaginoidea virens sclerotia in the increasing occurrence of rice false smut disease in the subtropical zone in China[J]. European Journal of Plant Pathology, 2018, 150(3):669-677. [27] Cheng T, Yao X Z, Wu C Y, et al. Endophytic Bacillus megaterium triggers salicylic acid-dependent resistance and improves the rhizosphere bacterial community to mitigate rice spikelet rot disease[J]. Applied Soil Ecology, 2020, 156:1-11. [28] Niu D D, Liu H X, Jiang C H, et al. The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate-and jasmonate/ethylene-dependent signaling pathways[J]. Molecular Plant-Microbe Interactions, 2011, 24:533-542. [29] Farzand A, Moosa A, Zubair M, et al. Transcriptional profiling of diffusible lipopeptides and fungal virulence genes during Bacillus amyloliquefaciens EZ1509-mediated suppression of Sclerotinia sclerotiorum[J]. Phytopathology, 2020, 110(2):317-326. [30] Rodríguez J, Tonelli M L, Figueredo M S, et al. The lipopeptide surfactin triggers induced systemic resistance and priming state responses in Arachis hypogaea L.[J]. European Journal of Plant Pathology, 2018, 152:845-851. [31] Paiboon T, Wichitra L, Janthima J, et al. Targeted transcriptional and proteomic studies explicate specific roles of Bacillus subtilis iturin A, fengycin, and surfactin on elicitation of defensive systems in mandarin fruit during stress[J]. PloS ONE, 2019, 14(5):e0217202. |