[1] Sparks A N. A review of the biology of the fall armyworm[J]. The Florida Entomologist, 1979, 62(2):82-87. [2] 郭井菲, 赵建周, 何康来, 等. 警惕危险性害虫草地贪夜蛾入侵中国[J]. 植物保护, 2018, 44(6):1-10. [3] Montezano D G, Specht A, Sosa-Gómez D R, et al. Host plants of Spodoptera frugiperda (Lepidoptera:Noctuidae) in the Americas[J]. African Entomology, 2018, 26(2):286-300. [4] FAO. Integrated management of the fall armyworm on maize[R]. Rome:Food and Agriculture Organization of the United Nations, 2017. [5] Goergen G, Kumar P L, Sankung S B, et al. First report of outbreaks of the fall armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in west and central Africa[J]. PLoS ONE, 2016, 11(10):e0165632. [6] FAO. Fall armyworm likely to spread from India to other parts of Asia with South East Asia and South China most at risk[R]. Rome:Food and Agriculture Organization of the United Nations, 2018. [7] Li Y H, Wang Z Y, Romeis J. Managing the invasive fall armyworm through biotech crops:a Chinese perspective[J]. Trends in Biotechnology, 2020, 39(2):105-107. [8] 吴孔明. 中国草地贪夜蛾的防控策略[J]. 植物保护, 2020, 46(2):1-5. [9] Young J R. Fall armyworm:control with insecticides[J]. Florida Entomologist, 1979, 62(2):130-133. [10] 农业农村部.农业农村部办公厅关于做好草地贪夜蛾应急防治用药有关工作的通知[EB/OL].[2019-06-03]. http://www.moa.gov.cn/gk/tzgg_1/tfw/201906/t20190605_6316201.htm. [11] Rasko D A, Altherr M R, Han C S, et al. Genomics of the Bacillus cereus group of organisms[J]. FEMS Microbiology Reviews, 2005, 29(2):303-329. [12] Schenpf E, Crickmore N, Rie V J, et al. Bacillus thuringiensis and its pesticidal crystal proteins[J]. Microbiology and Molecular Biology Reviews, 1998, 62(3):775-806. [13] Sanahuja G, Banakar R, Twyman R M, et al. Bacillus thuringiensis:a century of research, development and commercial applications[J]. Plant Biotechnology Journal, 2015, 9(3):283-300. [14] Palma L, Muñoz D, Berry C, et al. Bacillus thuringiensis toxins:an overview of their biocidal activity[J]. Toxins, 2014, 6(12):3296-3325. [15] Andrade R, Rodriguez C, Oehlschlager A C. Optimization of a pheromone lure for Spodoptera frugiperda (Smith) in central America[J]. Journal of the Brazilian Chemical Society, 2000, 11(6):609-613. [16] 李红梅, 万敏, 顾蕊, 等. 基于文献计量学的重大入侵害虫草地贪夜蛾的研究动态分析[J]. 植物保护, 2019, 45(4):34-42. [17] EPA. Details for DIPEL® DF biological insecticide dry flowable[EB/OL].[2018-12-10]. https://iaspub.epa.gov/apex/pesticides/f?p=PPLS:8:::::P8_PUID,P8_RINUM:15274,73049-39. [18] Figueiredo S C, Lemes A R N, Sebastião I, et al. Synergism of the Bacillus thuringiensis Cry1, Cry2, and Vip3 proteins in Spodoptera frugiperda control[J]. Applied Biochemistry and Biotechnology, 2019, 188:798-809. [19] Ingber D A, Mason C E, Flexner L. Cry1 Bt susceptibilities of fall armyworm (Lepidoptera:Noctuidae) host strains[J]. Journal of Economic Entomology, 2018, 111(1):361-368. [20] Grossi-De-Sa M F, Magalhaes M Q D, Silva M S, et al. Susceptibility of Anthonomus grandis (cotton boll weevil) and Spodoptera frugiperda (fall armyworm) to a Cry1Ia-type toxin from a Brazilian Bacillus thuringiensis strain[J]. Journal of Biochemistry and Molecular Biology, 2007, 40(5):773-782. [21] Chakroun M, Banyuls N, Bel Y, et al. Bacterial vegetative insecticidal proteins (Vip) from entomopathogenic bacteria[J]. Microbiology and Molecular Biology Reviews, 2016, 80(2):329-350. [22] Bergamasco V B, Mendes D R, Fernandes O A, et al. Bacillus thuringiensis Cry1Ia10 and Vip3Aa protein interactions and their toxicity in Spodoptera spp. (Lepidoptera)[J]. Journal of Invertebrate Pathology, 2013, 112(2):152-158. [23] ISAAA. Global status of commercialized biotech/GM crops:2018[J]. ISAAA Briefs, 2018, 54:143. [24] Siebert M W, Nolting S P, Hendrix W, et al. Evaluation of corn hybrids expressing Cry1F, Cry1A.105, Cry2Ab2, Cry34Ab1/Cry35Ab1, and Cry3Bb1 against Southern United States insect pests[J]. Journal of Economic Entomology, 2012, 105(5):1825-1834. [25] 张丹丹, 吴孔明. 国产Bt-Cry1Ab和Bt-(Cry1Ab+Vip3Aa)玉米对草地贪夜蛾的抗性测定[J]. 植物保护, 2019, 45(4):54-60. [26] Fatoretto J C, Michel A P, Silva F M C, et al. Adaptive potential of fall armyworm (Lepidoptera:Noctuidae) limits Bt trait durability in Brazil[J]. Journal of Integrated Pest Management, 2017, 8(1):1-10. [27] Wang X Q, Shu C L, Jiang J, et al. Screening and identification of cry genes from Bacillus thuringiensis isolates highly toxic to the larvae of Holotrichia oblita[J]. Journal of Plant Protection, 2016, 43(3):483-492. [28] Calabrese D M, Nickerson K W, Lane L C. A comparison of protein crystal subunit sizes in Bacillus thuringiensis[J]. Canadian Journal of Microbiology, 1980, 26(8):1006-1010. [29] Song F P, Zhang J, Gu A X, et al. Identification of cry1I-type genes from Bacillus thuringiensis strains and characterization of a novel cry1I-type gene[J]. Applied and Environmental Microbiology, 2003, 69(9):5207-5211. [30] 单月明. 苏云金芽胞杆菌新型杀虫基因的发掘与活性分析[D]. 哈尔滨:东北农业大学, 2019. [31] 萨姆布鲁克J, 拉塞尔D W. 黄培堂, 译. 2002分子克隆实验指南(第3版)[M]. 北京:科学出版社, 2008. [32] Wang G J, Zhang J, Song F P, et al. Engineered Bacillus thuringiensis G033A with broad insecticidal activity against Lepidopteran and Coleopteran pests[J]. Applied Microbiology and Biotechnology, 2006, 72(5):924-930. [33] Sambrook J, Fritsch E F, Maniatis T. Molecular cloning[M]. New York:Cold Spring Harbor Laboratory Press, 1989. [34] Lereclus D, Arantès O, Chaufaux J, et al. Transformation and expression of a cloned δ-endotoxin gene in Bacillus thuringiensis[J]. FEMS Microbiology Letters, 1989, 60(2):211-217. [35] Zhou Z S, Yang S J, Shu C L, et al. Comparison and optimization of the method for Cry1Ac protoxin preparation in HD73 strain[J]. Journal of Integrative Agriculture, 2015, 14(8):1598-1603. [36] 农药市场信息. 我国批准登记第3个草地贪夜蛾防治药剂[EB/OL].[2020-10-10]. http://jsppa.com.cn/news/yanfa/3547.html. [37] Monnerat R G, Batista A C, Medeiros P T, et al. Screening of Brazilian Bacillus thuringiensis isolates active against Spodoptera frugiperda, Plutella xylostella and Anticarsia gemmatalis[J]. Biological Control, 2007, 41(3):291-295. [38] 刘华梅, 胡虓, 王应龙, 等. 对草地贪夜蛾高毒力的苏云金杆菌菌株筛选[J]. 中国生物防治学报, 2019, 35(5):721-728. [39] Frankenhuyzen K V. Insecticidal activity of Bacillus thuringiensis crystal proteins[J]. Journal of Invertebrate Pathology, 2009, 101(1):1-16. [40] Chang J H, Roh J Y, Je Y H, et al. Isolation of a strain of Bacillus thuringiensis ssp. kurstaki HD-1 encoding δ-endotoxin Cry1E[J]. Letters in Applied Microbiology, 1998, 26(5):387-390. [41] IRAC. Susceptibility test method 020, version 3.2[EB/OL].[2011-5]. https://irac-online.org/methods/spodoptera-helicoverpa-heliothis-larvae. [42] 李国平, 姬婷婕, 孙小旭, 等. 入侵云南草地贪夜蛾种群对5种常用Bt蛋白的敏感性评价[J]. 植物保护, 2019, 45(3):15-20. [43] Gouffon C, Vliet A V, Rie J V, et al. Binding sites for Bacillus thuringiensis Cry2Ae toxin on Heliothine brush border membrane vesicles are not shared with Cry1A, Cry1F, or Vip3A toxin[J]. Applied and Environmental Microbiology, 2011, 77(10):3182-3188. |