[1] 王莹, 禇扬, 李伟, 等. 三七中皂苷成分及其药理作用的研究进展[J]. 中草药, 2015, 46(9): 1381-1392. [2] 姜青君. 中药三七对血液系统药理药效作用研究[J]. 中西医结合心血管病电子杂志, 2015, 3(31): 62, 64. [3] 娜布其, 布日古德, 李旻辉, 等. 基于数据挖掘的《中华人民共和国药典》中中药材与蒙药材对比研究[J]. 中国民族医药杂志, 2020, 26(12): 62-67. [4] 王奕, 张锡顺, 杨妍, 等. 云南省三七产业发展深度洞察与策略优化[J]. 农业工程, 2025, 15(10): 159-166. [5] Deng L, Luo L, Li Y, et al. Autotoxic ginsenoside stress induces changes in root exudates to recruit the beneficial Burkholderia strain B36 as revealed by transcriptomic and metabolomic approaches[J]. Agricultural and Food Chemistry, 2023, 71(11): 4536-4549. [6] 张金丽. 三七根腐病及生物防治研究进展[J]. 农村经济与科技, 2022, 33(2): 50-52. [7] 毛忠顺, 龙月娟, 朱书生, 等. 三七根腐病研究进展[J]. 中药材, 2013, 36(12): 2051-2054. [8] 袁也, 顾红蕊, 张潇丹, 等. 臭氧对三七自毒皂苷的降解和根腐病菌的抑制效应研究[J]. 云南农业大学学报(自然科学), 2019, 34(1): 124-131. [9] 罗丽芬, 江冰冰, 邓琳梅, 等. 三七根系分泌物中几种成分对根腐病原菌生长的影响[J]. 南方农业学报, 2020, 51(12): 2952-2961. [10] 陈胜倩, 王正平, 施雨宇, 等. 外源施用水杨酸调控三七根系代谢对根腐病发生的影响[J]. 中国生物防治学报, 2025, 41(1): 177-185. [11] 孙向平. 我国根腐病绿色防治研究进展[J]. 农业科学, 2019, 9(12): 1193-1196. [12] Bailly A, Weisskopf L. The modulating effect of bacterial volatiles on plant growth: current knowledge and future challenges[J]. Plant Signaling & Behavior, 2012, 7(1): 79-85. [13] Huang X Q, Zhang N, Yong X Y, et al. Biocontrol of Rhizoctonia solani damping-off disease in cucumber with Bacillus pumilus SQR-N43[J]. Microbiological Research, 2012, 167(3): 135-143. [14] 穆文强, 康慎敏, 李平兰. 根际促生菌对植物的生长促进作用及机制研究进展[J]. 生命科学, 2022, 34(2): 118-127. [15] Gouda S, Kerry RG, Das G, et al. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture[J]. Microbiological Research, 2018, 206: 131-140. [16] 尤佳琪, 吴明德, 李国庆. 绿色木霉菌在植物病害生物防治中的应用及作用机制[J]. 中国生物防治学报, 2019. 35(6): 966-976. [17] 李玥, 罗丽芬, 王烜东, 等. 三七根际耐皂苷绿色木霉菌的分离鉴定及其拮抗促生活性评价[J]. 中国农业大学学报, 2023, 28(8): 133-143. [18] Bakker AP, Pieterse MC, Jonge DR, et al. The soil-borne legacy[J]. Cell, 2018, 172(6): 1178-1180. [19] Liu Y, Zhang H, Wang J, et al. Nonpathogenic Pseudomonas syringae derivatives and its metabolites trigger the plant “cry for help” response to assemble disease suppressing and growth promoting rhizomicrobiome[J]. Nature Communications, 2024, 15: 1907. [20] 李佳佳. 植物水杨酸代谢及其调控的研究进展[J]. 世界生态学, 2023, 12(2): 209-219. [21] Wang Y, Pruitt RN, Nürnberger T, et al. Evasion of plant immunity by microbial pathogens[J]. Nature Reviews Microbiology, 2022, 20: 449-464. [22] 李林, 宋凯, 何亚文. 植物激素水杨酸在微生物中的功能与作用机制[J]. 微生物前沿, 2024, 13(1): 14-27. [23] 谷晓勇, 刘扬, 刘利静. 植物激素水杨酸生物合成和信号转导研究进展[J]. 遗传, 2020, 42(9): 858-869. [24] Zhou Y, Liu P, Tang Y, et al. NPR1 promotes blue light-induced plant photomorphogenesis by ubiquitinating and degrading PIF4[J]. Proceedings of the National Academy of Sciences, 2024, 121(52): e2412755121. [25] Kuang Y, Liu L, Yan F, et al. Functions of phytohormones during the interactions between rice and pathogens[J]. Biotechnology Bulletin, 2018, 34(2): 74-86. [26] Frąckowiak P, Pospieszny H, Smiglak M, et al. Assessment of the efficacy and mode of action of benzo(1, 2, 3)-thiadiazole-7-carbothioic acid s-methyl ester (BTH) and its derivatives in plant protection against viral disease[J]. International Journal of Molecular Sciences, 2019, 20(7): 1598. [27] 郑家瑞, 李云洲. BTH诱导番茄耐番茄斑萎病毒( TSWV)研究[J]. 核农学报, 2022, 36(3): 489-496. [28] 朱振家, 杨瑞, 秦宝, 等. 3种诱导剂单独和联合使用对草莓灰霉病防治效果比较[J]. 生物化工, 2020, 6(6): 72-74. [29] 左应梅, 简邦丽, 黄正鸿, 等. 4种诱抗剂对三七生长、抗病性及相关酶活性的影响[J]. 中国现代中药, 2016, 18(8): 1024-1029. [30] Li X, Zhang H, Tian Y, et al. Synergistic effects of benzothiadiazole and Bacillus subtilis on induced resistance against bacterial wilt in tomato[J]. Frontiers in Microbiology, 2019, 10: 1453. [31] Alizadeh H, Behboudi K, Javan-Nikkhah M, et al. Combined application of Trichoderma harzianum and benzothiadiazole induces systemic resistance against Fusarium wilt in cucumber[J]. Biological Control, 2021, 152: 104428. [32] 赵微, 崔璇, 赵蕾. 磷、铁胁迫对棘孢绿色木霉菌根际定殖的影响[J]. 西北农业学报, 2022, 31(1): 72-78. [33] 李兴龙, 李彦忠. 土传病害生物防治研究进展[J]. 草业学报, 2015, 24(3): 204-212. [34] Sun JY, Li SH, Fan CY, et al. N-Acetylglucosamine promotes tomato plant growth by shaping the community structure and metabolism of the rhizosphere microbiome[J]. Microbiology Spectrum, 2022, 10(3): e0035822. [35] Mazurier S, Corberand T, Lemanceau P, et al. Phenazine antibiotics produced by fluorescent Pseudomonads contribute to natural soil suppressiveness to Fusarium wilt[J]. The International Society for Microbial Ecology, 2009, 3(8): 977-991. [36] Toju H, Peay K G, Yamamichi M, et al. Core microbiomes for sustainable agroecosystems[J]. Nature Plants, 2018, 4(5): 247-257. [37] 范志金, 刘秀峰, 艾应伟, 等. 植物激活剂苯并噻二唑(BTH)[J]. 四川师范大学学报(自然科学版), 2004, 27(4): 410-413. [38] 翟杨, 罗晨, 牛艳斌, 等. 四种诱抗剂对苎麻生长发育和抗苎麻夜蛾特性的影响[J]. 植物保护学报, 2022, 49(3): 809-815. [39] Zhu X, Ma K, Yao Y, et al. Benzothiadiazole induced changes in the transcriptome and regulation of banana fruit ripening and disease resistance[J]. Postharvest Biology and Technology, 2023, 196: 112161. [40] 危潇, 曹春霞, 黄大野, 等. 木霉菌生防作用机制及协同防病的研究进展[J]. 中国农业科技导报, 2024, 26(11): 126-135. [41] 刘新华. BTH防治芒果采后炭疽病及其系统获得抗性机理[D]. 海口: 海南大学, 2010. [42] Nadia L, Stefania V, David T, et al. Root exudates of stressed plants stimulate and attract Trichoderma soil fungi[J]. Molecular plant-microbe interactions, 2018, 31(3): 366-376. [43] 赵玳琳, 赵诗灿, 何海永, 等. 木霉GYSW-6mL在百合根际土壤的定殖及其对微生物多样性的影响[J]. 贵州农业科学, 2025, 53(1): 32-41. [44] 孟素玲, 王媛, 顾欣, 等. 西瓜枯萎病菌和哈茨木霉的GFP标记及根部动态定殖比较[J]. 西北农业学报, 2024, 33(2): 355-363. [45] 赵莹, 杨欣宇, 赵晓丹, 等. 植物类黄酮化合物生物合成调控研究进展[J]. 食品工业科技, 2021, 42(21): 454-463. |